DOI QR코드

DOI QR Code

MEMS 공정기술을 적용한 MOSFET형 수소센서의 설계, 제작에 관한 연구

Design and Fabrication of MOSFET Type Hydrogen Gas Sensor Using MEMS Process

  • 김범준 (서울시립대학교 신소재공학과) ;
  • 김정식 (서울시립대학교 신소재공학과)
  • Kim, Bum Joon (Department of Materials Science and Engineering, The University of Seoul) ;
  • Kim, Jung Sik (Department of Materials Science and Engineering, The University of Seoul)
  • 투고 : 2010.10.14
  • 발행 : 2011.04.25

초록

In this study, MOSFET type micro hydrogen gas sensors with platinum catalytic metal gates were designed, fabricated, and their electrical characteristics were analyzed. The devised MOSFET Hydrogen Sensors, called MHS-1 and -2, were designed with a platinum gate for hydrogen gas adsorption, and an additional sensing part for higher gas sensitivity and with a micro heater for operation temperature control. In the electrical characterization of the fabricated Pt-gate MOSFET (MHS-1), the saturated drain current was 3.07 mA at 3.0 V of gate voltage, which value in calculation was most similar to measurement data. The amount of threshold voltage shift and saturated drain current increase to variation of hydrogen gas concentration were calculated and the hydrogen gas sensing properties were anticipated and analyzed.

키워드

과제정보

연구 과제번호 : 소재원천기술개발사업

연구 과제 주관 기관 : 지식경제부

참고문헌

  1. C. Christofides et al., J. Appl. Phys. 68, R1 (1990). https://doi.org/10.1063/1.346398
  2. J. M. Lee et al., Kor. J. Met. Mater. 48, 342 (2010). https://doi.org/10.3365/KJMM.2010.48.04.342
  3. I. Lundstrom, Sens. and Acts. 1, 405 (1981).
  4. I. Lundstrom, et al., Sens. and Acts. 2, 105 (1981/1982).
  5. I. Lundstrom, Chem. Sens. Tech. 2, 1 (1989).
  6. I. Lundstrom, Appl. Phys. Lett. 26, 55 (1975). https://doi.org/10.1063/1.88053
  7. I. Lundstrom, Sens. Actuators A 56, 75 (1996). https://doi.org/10.1016/0924-4247(96)01286-1
  8. J. Fogelberg et al., J. Appl. Phys. 78, 988 (1995). https://doi.org/10.1063/1.360293
  9. C. Nylander et al., J. Appl. Phys. 4, 1177 (1984).
  10. Y. Morita et al., Sens. and Acts. B 33, 96 (1996). https://doi.org/10.1016/0925-4005(96)01956-9
  11. T. Eklov et al., Anal. Chim. Acta. 353, 291 (1997). https://doi.org/10.1016/S0003-2670(97)87788-4
  12. I. Eisele et al., Sens. and Acts. B 78, 19 (2001). https://doi.org/10.1016/S0925-4005(01)00786-9
  13. J. Wollenstein et al., Eurosensors 10 (2004).
  14. M. Armgarth et al., IEEE Elec. Devi. Lett., EDL-3, no.12 (1982).
  15. K. Tsukada et al., Sens. and Acts. B 114, 158 (2006). https://doi.org/10.1016/j.snb.2005.04.026
  16. P. Bergveld, Sens. and Acts. 8, 109 (1985). https://doi.org/10.1016/0250-6874(85)87009-8
  17. B. G. Streetman, Solid State Electronic Devices 4th Edition, 299 (1995).
  18. I. Lundstrom, Sens. and Acts. A 56, 75 (1996). https://doi.org/10.1016/0924-4247(96)01286-1