DOI QR코드

DOI QR Code

페라이트계 및 오스테나이트계 스테인리스강과 IF강의 이종 접합부의 저항 점 용접성 평가

Assessment of Resistance Spot Weldability of Dissimilar Joints of Austenitic Stainless Steels/IF Steels and Ferritic Stainless Steels/IF Steels

  • 이진범 (부산대학교 공과대학 재료공학과) ;
  • 김동철 (한국생산기술연구원 용접 접합연구부) ;
  • 남대근 (한국생산기술연구원 동남권 기술지원본부) ;
  • 강남현 (부산대학교 공과대학 재료공학과) ;
  • 김순국 (동의대학교 공과대학 신소재공학과) ;
  • 유지훈 (한국기계연구원 부설 재료연구소) ;
  • 임영목 (한국기계연구원 부설 재료연구소) ;
  • 박영도 (동의대학교 공과대학 신소재공학과)
  • Lee, Jin-Beom (Department of Materials Science and Engineering, Pusan National University) ;
  • Kim, Dong-Cheol (Advanced Welding & Joining R&D Department, Korea Institute of Industrial Technology) ;
  • Nam, Dae-Geun (Dongnam Technology Service Division, Korea Institute of Industrial Technology) ;
  • Kang, Nam Hyun (Department of Materials Science and Engineering, Pusan National University) ;
  • Kim, Soon-Kook (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Yu, Ji-Hun (Korea Institute of Materials Science) ;
  • Rhym, YoungMok (Korea Institute of Materials Science) ;
  • Park, Yeong-Do (Department of Advanced Materials Engineering, Dong-Eui University)
  • 투고 : 2010.07.08
  • 발행 : 2011.01.25

초록

The spot weldability of dissimilar metal joints between austenitic stainless steels (STS316)/IF steels and ferritic stainless steels (STS430)/IF steels was investigated. This study was aimed to determine the spot welding parameters for a dissimilar metal joint and to evaluate the dissimilar metal joint's weldability, including its welding nugget shape, tensile-shear strength, hardness, and microstructure. The comparison of these results was described in terms of fracture behavior. Compared with the weld lobe of similar metal joints, dissimilar metal joints (STS430/IF) had reduced weld current range. However, the weld lobe of STS316/IF steel joint showed increased weld current range. This is because the dilution of chemical composition in the molten weld pool suppressed the heat input being caused by Joule heat with current flow through the samples. The microstructure of the fusion zone was fully martensite and mixture of ferrite and martensite for austenitic stainless steel/IF steel and ferritic stainless steel/IF steel combination, respectively. The experimental results showed that the shape of nugget was asymmetric, in which the fusion zone of the austenitic and ferritic stainless steel sheet was larger due to the higher bulk-resistance. The predicted microstructure by using the Schaeffler diagram was well matched with experimental results. After peel test, the fracture was initiated from heat affected zone of ferritic stainless steel sheet side, however the final fracture was propagated into the IF steel sheet side due to its lower strength.

키워드

참고문헌

  1. J. K. Kim, I. S. Woo, J. B. Lee, and S. G. Hong, POSCO Research Paper, 12, 42 (2007).
  2. J. B. Shamsul and M. M. Hisyam, J. Appl. Sci. Res. 3, 1494 (2007).
  3. P. Jcunat, Metal Bulletin International Automotive Materials Conference, cologne, 21st to 23rd (2000).
  4. M. Milititsky, E. Pakalnins, C. Jiang, and A. K. Thompson, SAE 3, 334 (2003).
  5. A. Hasanbasoglu and R. Kaxar, Materials and Design 28, 1794 (2007). https://doi.org/10.1016/j.matdes.2006.05.013
  6. M. Vural and A. Akkus, Journal of Materials Processing Technology 153-154, 1 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.063
  7. M. Vural, A, Akkus, and B. Eryurek, Journal of Materials Processing Technology 176, 127 (2006). https://doi.org/10.1016/j.jmatprotec.2006.02.026
  8. D. Ozyurek, Materials and Design 29, 597 (2008). https://doi.org/10.1016/j.matdes.2007.03.008
  9. M. M. H. Abasi and M. Pouranvari, MJoM 16, 133 (2010).
  10. M. Pouranvari, H. R. Asgari, S. M. Mosavizadch, P. H. Marashi, and M. Goodarzi, Sci. Technol. Weld. Join. 12, 217 (2007). https://doi.org/10.1179/174329307X164409
  11. S. H. Lin, J. Pan, S. R. Wu, T. Tyan, and P. Wung, International Journal of Solids and Structures 39, 19 (2002). https://doi.org/10.1016/S0020-7683(01)00187-1
  12. Korean Standards Service Network, KS B 0850, http://www.kssn.net (1999-2009).
  13. P. Marashi, M. Pouranvari, S. Amirabdollahian, A. Abedi, and M. Goodarzi, Mater. Sci. and Eng. A 480, 175 (2008). https://doi.org/10.1016/j.msea.2007.07.007
  14. M. Alentus, P. Pohjanne, M. Somervuori, and H. Hanninen, Welding Research 12, 305s (2006).
  15. C. C. Hsieh, D. Y. Lin, and W. Wu, Met. Mater. Inter. 14, 643 (2008). https://doi.org/10.3365/met.mat.2008.10.643
  16. Y. J. Chao, J. Eng. Mater. Technol. 125, 125 (2003). https://doi.org/10.1115/1.1555648
  17. J. C. Lippold and D. J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels, p. 87-137, Ajohn Wiley & Sons, Inc. (2005).
  18. J. K. Kim, I. S. Woo, J. B. Lee, and B. Y. Jeong, Journal of KWS 24, 475 (2006).
  19. Ya. M. Potak and E. A. Sagalevich, Termicheskaya Obrabotka Metallov 9, 722 (1971).
  20. A. Klimpel, T. Kik, and J. Gorka, J. Achievement in Materials and Manufacturing Engineering 21, 83 (2007).
  21. F. Tehovnik, F. Vodopivec, L. Kosec, and M. Godec, Materials in Tehnologije 40, 129 (2006).
  22. L. A. Dobrzanski, Z. Brytan, M. A. Grande, and M. Rosso, Arc. Mater. Sci. Eng. 30, 49 (2008).