Effects of Plant Growth regulators on Rapid in vitro Propagation of Camptotheca acuminata from Axillary Buds

  • Kang, Seung-Mi (Division of Forest Research, Gyeongsangnam-do Forest Environment Research Institute) ;
  • Min, Ji-Yun (Suncheong Oriental Medicinal Herb Institute) ;
  • Park, Dong-Jin (Division of Environmental Forest Science, Gyeongsang National Univ.) ;
  • Jeong, Mi-Jin (Division of Environmental Forest Science, Gyeongsang National Univ.) ;
  • Song, Hyun-Jin (Division of Environmental Forest Science, Gyeongsang National Univ.) ;
  • Heo, Chang-Mi (Division of Environmental Forest Science, Gyeongsang National Univ.) ;
  • Moon, Hyun-Shik (Division of Environmental Forest Science, Gyeongsang National Univ.) ;
  • Kim, Jong-Gab (Division of Environmental Forest Science, Gyeongsang National Univ.) ;
  • Karigar, Chandrakant S. (Department of Biochemistry, Bangalore Univ.) ;
  • Choi, Myung-Suk (Division of Environmental Forest Science, Gyeongsang National Univ.)
  • Received : 2011.01.03
  • Accepted : 2011.02.22
  • Published : 2011.02.28

Abstract

An efficient method for the rapid micropropagation of Camptotheca acuminata from axillary buds was established by application of various plant growth regulators. Among various cytokinins, $0.5mg\;L^{-1}$ BA showed the best performance on shoot multiplication, number average multiple shoots up to 10.8. The propagated shoot cuttings in vitro were elongated on NN basal medium without plant growth regulators. The secondary multiple shoots were induced at the site of initially induced buds. Rooting was induced directly near the base of the shoot on half-strength NN medium containing $0.5mg\;L^{-1}$ of IBA, whereas high concentration of $1.0mgL^{-1}$ IBA could induce callus at the base of the shoot. The camptothecin content, anticancer compound of the micropropagated plants was contained in various tissues. Camptothecin contents were 1.8 and $2.5mg\;g^{-1}$ dry weight in stems from propagated in vitro and mother plant, respectively. This result may be used to develop strategies for large-scale propagation of elite C. acuminata trees.

Keywords

Acknowledgement

Supported by : Korea Forest Service

References

  1. Ajitkumar, D. and S. Seeni. 1998. Rapid clonal multiplication through in vitro axillary shoot proliferation of Aegle marmelos (L.) Corr., a medicinal tree. Plant Cell Reports 17: 422-426. https://doi.org/10.1007/s002990050418
  2. Cao, B. H., Z. R. Long, and Y. T. Liang. 1993. Study on rapid micropropagation of black locust tree (in Chinese). J. Shandong Agric.l Univ. 24: 52-61.
  3. Chalupa, V. 1983. In vitro propagation of willow (Salix spp.), European mountain-ash (Sorbus aucuparia L.), and black locust (Robinia pseudoacacia L.). Plant Biol. 25: 305-307. https://doi.org/10.1007/BF02902879
  4. Cline, M. G. 1991. Apical dominance. Botanical Reversable 57: 318-359. https://doi.org/10.1007/BF02858771
  5. Choi, Y. G. 2004. Trends on Temperature and Precipitation Extreme Events in Korea. J. Korean Geographical Soc. 39: 711-721.
  6. Devarumath, R., S. Nandy, V. Rani, S. Marimuthu, N. Muraleedharan, and S. Raina 2002. RAPD, ISSR and RFLP fingerprints as useful markers to evaluate genetic integrity of micropropagated plants of three diploid and triploid elite tea clones representing Camellia sinensis (China type) and C. assamica ssp. assamica (Assam-India type). Plant Cell Reports 21: 166-173. https://doi.org/10.1007/s00299-002-0496-2
  7. Hsiang, Y. H., R. Hertzberg, S. Hecht, and L. F. Liu. 1885. Camptothecin induces protein -linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem. 260: 14873-14878.
  8. Islam, R., A. Hoque, M. Khalekuzzaman, and O. I. Joarder. 1997. Micropropagation of Azadirachta indica A. Juss. From explants of mature plants. Plant Tissue Culture 7: 41-46.
  9. Joarder, O. I., A. T. M. Naderuzzaman, R. Islam, M. Hossain, N. Joarder, and B. K. Biswas. 1993. Micropropagation of neem through axillary bud culture. In Proceedings of the World Neem Conference. pp. 24-28. eds. February, Bangalore.
  10. Joshi, M. S. and S. R. Thengane. 1996. In vitro propagation of Azadirachta indica A. Juss. (Neem) by shoot proliferation. Indian J. Experimental Biol. 34: 480-482.
  11. Kitamura, Y., H. Miura, and M. Sugii, 1985. Change of alkaloid distribution in regenerated plants of Duboisia myoproides during development. Planta Medica 6: 489-491.
  12. Komalavalli, N. and M. V. Rao. 2000. In vitro micropropagation of Gymnema sylvestre -A multipurpose medicinal plant. Plant Cell Tissue and Organ Culture 61: 97-105. https://doi.org/10.1023/A:1006421228598
  13. Martin, K. P. 2002. Rapid propagarion of Holostemma ada-kodien Schult., a rare medicinal plant, through axillary bud multiplication and indirect organogenesis. Plant Cell Reports 21: 112-117. https://doi.org/10.1007/s00299-002-0483-7
  14. Mok, M. C. 1994. Cytokinins and plant development and overview. In Mok et al eds. Cytokinins, Chemistry, Activity and Function. Boca Raton, CRC Press.
  15. Nitsch, J. P. and C. Nitsch, 1969. Haploid plants from pollen grains. Science 163: 85-87. https://doi.org/10.1126/science.163.3862.85
  16. Prakash, E., V. Sha, P. S., Khan, R. P. Sairam, and K. R. Rao. 1999. Regeneration of plants from seed-derived callus of Hybanthus enneaspermus L. Muell., a rare ethnobotanical herb. Plant Cell Reports 18: 873-878. https://doi.org/10.1007/s002990050677
  17. Sahoo, Y. and P. K. Chand, 1998. Micropropagation of Vitex negundo L., a woody aromatic medicinal shrub, through high-frequency axillary shoot proliferation. Plant Cell Reports. 18: 301-307. https://doi.org/10.1007/s002990050576
  18. Shu, Q. Y., G. S. Liu, D. M. Qi, C. C. Chu, J. Liu, and H. J. Li. 2003. An effective method for axillary bud culture and RAPD analysis of cloned plants in tetraploid black locust. Plant Cell Reports 22: 175-180. https://doi.org/10.1007/s00299-003-0661-2
  19. Sreekumar, S., S. Seeni, and P. Pushpangadan. 2000. Micropropagation of Hemidesmus indicus for cultivation and production of 2-hydroxy-4-methoxy benzaldehyde. Plant Cell Tissue and Organ Culture 62: 211-218. https://doi.org/10.1023/A:1006486817203
  20. Sudo, H., Y. Hasegawa, and J. Matsunaga. 1997. Camptothecin and 10- hyroxycamptothecin in callus and plantlets of Camptotheca acuminata. Plant Cell Tissue and Organ Culture 49: 213-218. https://doi.org/10.1023/A:1005704429339
  21. Van Hengel, A. J., M. P. Harkes, H. J. Wichers, P. G. M. Hesselink, and R. M. Buitelaar. 1992. Characterization of callus formation and camptothecin production by cell lines of Camptotheca acuminata. Plant Cell Tissue and Organ Culture. 28: 11-18. https://doi.org/10.1007/BF00039910
  22. Vengadesan, G., A. Ganapathi, S. Amutha, and N. Selwaraj. 2002. In vitro propagation of Acacia species. Plant Science 163: 663-671. https://doi.org/10.1016/S0168-9452(02)00144-9
  23. Venkateswarlu, B., J. C. Katyal, J. Choudhari. and K. Mukhopadhyay. 1999. Micropropagation of plus neem (Azadirachta indica A. Juss.) and evaluation of field transferred plants. Indian Forester 124: 537-543.
  24. Wiedenfeld H, Furmanowa M, Roeder E, Guzewska J and Gustowski W. 1997. Camptothecin and 10-hydroxycamptothecin in callus and plantlets of Camptotheca acuminata. Plant Cell Tissue and Organ Culture 49: 213-218. https://doi.org/10.1023/A:1005704429339
  25. Yamazaki, Y., A. Urano, H. Sudo, M. Kitajima, H. Takayama, M. Yamazaki, N. Aimi. and K. Saito. 2003. Metabolite profiling of alkaloids and strictosidine synthase activity in camptothecin producing plants. Phytochem. 62: 461-270. https://doi.org/10.1016/S0031-9422(02)00543-5