DOI QR코드

DOI QR Code

Methoxycinnamidopropyl Polysilsesquioxane의 랫드를 이용한 배.태자 발생독성 연구

Embryo-Fetal Developmental Toxicity Study of Methoxycinnamidopropyl Polysilsesquioxane

  • 투고 : 2011.09.09
  • 심사 : 2011.09.19
  • 발행 : 2011.09.30

초록

기존의 유기계 자외선차단제는 피부투과 및 자극으로 인한 안전성의 문제가 제기되었으며, 무기계 자외선차단제는 나노화에 따른 안전성 문제가 제기되고 있다. 이로 인하여, 최근의 자외선차단제 연구는 유효성뿐만 아니라 안전성이 우수한 다양한 형태의 자외선차단제가 연구되고 있으며, 그 중의 하나가 유기-무기 결합구조의 자외선차단제에 관한 연구이다. 본 연구진은 가교된 고분자 입자 타입의 신규 자외선차단제로서 메톡시신나미도프로필실세스퀴옥산의 제조, 물성 및 유효성 평가에 대하여 보고한 바가 있다. 본 연구는 신규 자외선차단제인 메톡시신나미도프로필실세스퀴옥산의 랫드에 대한 배 태자 발생독성 연구에 관한 것으로서, 이러한 평가는 본 시험물질이 임상에서 임신 전 후에 노출 되었을 경우 불임 및 배 태아의 이상에 대한 구체적인 정보를 제공해줄 것으로 기대된다.

Existing organic UV protection materials seem to be problematic due to their penetration and irritation to skin. Inorganic UV protection materials are also at issue for safety of their nano-type transformation. Therefore, the recent studies of UV protection materials have been focused not only on the effectiveness but also on their safety. One of the UV protection materials in study which have higher safety is the organic-inorganic conjugation type UV protection material. Previously, we have reported the manufacturing process, physical property and UV protection efficiency of methoxychinnamidoprophy poloysilsesquixan as a new cross-linked polymer type UV protection material. In this study, we have evaluated the effect of the methoxychinnamidoprophy poloysilsesquixan on embryo-fetal development in SD rats. This study is expected to show some definite information related to the effect on pregnancy or embryo-fetal abnormality in case of the clinical exposure of the methoxychinnamidoprophy poloysilsesquixan.

키워드

참고문헌

  1. K. M. Habson, E. Gratton, and C. J. Bardeen, Sunscreen enhancement of UV-induced reactive oxygen species in the skin, Free Radical Biol. Med., 41(8), 1205 (2006). https://doi.org/10.1016/j.freeradbiomed.2006.06.011
  2. E. Damiani, W. Baschong, and L. Greci, UV-filter combinations under UV-A exposure: Concomitant quantification of over-all spectral stability and molecular integrity, J. Photochem. Photobiol. B., 87(2), 95 (2007). https://doi.org/10.1016/j.jphotobiol.2007.03.003
  3. N. Serpone and A. Salinaro, Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis, Pure Appl. Chem., 71, 303 (1999). https://doi.org/10.1351/pac199971020303
  4. J. D. Bos and M. M. Meinardi, The 500 dalton rule for the skin penetration of chemical compounds and drugs, Exp. Dermatol., 9, 165 (2000). https://doi.org/10.1034/j.1600-0625.2000.009003165.x
  5. N. Shaath and I. Walele, Inorganic particulate ultraviolet filter, 281, Taylor & Francis, New York (2005).
  6. E. Tegou, V. Bellas, E. Gogolides, P. Argitis, D. Eon, G. Cartry, and C. Cardinaud, Polyhedral oligomeric silsesquioxane (POSSP) based resists: materials design challenges and lighographic evaluation at 157 nm, Chem. Mater., 16, 2567 (2004). https://doi.org/10.1021/cm035089x
  7. M. S. Lim, Y. B. Kim, T. K. Jung, and K. S. Yoon, Development of UV-screening polysilsesquioxane spheres, J. Soc. Cosmet. Scientists Korea, 31(1), 65 (2005).
  8. T. K. Jung, Y. B. Kim, T. J. Yoon, and K. S. Yoon, Studies on the in vitro SPF assay and application of cosmetic formulation of methoxycinnamidopropyl polysilsesquioxane with a new UV-screening agent, J. Soc. Cosmet. Scientists Korea, 36(1), 47 (2010).
  9. D. K. Choi, T. K. Jung, T. Y. Lim, T. H. Kim, Y. B. Kim, J. H. Lee, K. S. Yoon, and T. J. Yoon, Protective effects of methoxycinnamidopropyl polysilsesquioxane, Photochemistry and Photobiology, in press (2011).
  10. J. G. Wilson, Methods for administering agents and detecting malformations in experimental animals. In: Wilson, J. G., Warkany, J. (Eds.), Teratology. Principles and Techniques. University of Chicago Press, Chicago, 262-277 (1965).
  11. K. A. Nishimura, Microdissection method for detecting thoracic visceral malformations in mouse and rat fetuses, Congenital Anomalies, 14, 23 (1974).
  12. M. Inouye, Differential staining of cartilage and bone in fetal mouse skeleton by Alcian Blue and Alizarin Red S, Congenital Anomalies, 16, 171 (1976).
  13. L. D. Wise, S. L. Beck, D. Beltrame, B. K. Beyer, and I. Chahoud, et al., Terminology of developmental abnormalities in common laboratory mammals (version 1), Teratology, 55, 249 (1997). https://doi.org/10.1002/(SICI)1096-9926(199704)55:4<249::AID-TERA5>3.0.CO;2-W
  14. Biological reference data on CD(SD) IGS Rats- 2001, Yokohama, (2001).
  15. H. Morita, F. Ariuki, N. Inomata, K. Nishimura, Y. Hasegawa, M. Miyamoto, and T. Watanabe, Spontaneous malformations in laboratory animals : Frequency of external, internaland skeletal malformations in rats, rabbits and mice, Congenital Anomalies, 27, 147 (1987). https://doi.org/10.1111/j.1741-4520.1987.tb00703.x
  16. T. Nakatsuka, M. Horimoto, Y. Matsubara, M. Akaike, and F. Ariyuki, Japan pharmaceutical manufacturers association (JPMA) survey on back ground control data of developmental and reproductive toxicity studies in rats, rabbits and mice, Congenital Anomalies, 37, 47 (1997). https://doi.org/10.1111/j.1741-4520.1997.tb00547.x
  17. Prenatal developmental toxicity study, OECD TG 414, 22 (2001).
  18. T. Yamada, M. Hara, Y. Ohba, T. Inoue, and H. Ohno, Studies on implantation traces in rats. II. Staining of cleared uteri, formation and distribution of implantation traces, Jikken Dobutsu, 34, 249 (1985).
  19. J. L. Stuckhardt and S. M. Poppe, Fresh visceral examination of rat and rabbit fetuses used in teratogenicity testing, Teratogenesis, Carcinogenesis, and Mutagenesis, 4, 181 (1984). https://doi.org/10.1002/tcm.1770040203
  20. J. Stadler, M. J. Kessedjian, and J. Perraud, Use of the New Zealand white rabbit in teratology: Incidence of spontaneous and drug-induced malformations. Food Chem. Toxicol., 21(5), 631 (1983). https://doi.org/10.1016/0278-6915(83)90151-5
  21. A. W. Hayes, Principles and methods of toxicology. TAYLOR & FRANCIS, 1301-1381 (2001).