DOI QR코드

DOI QR Code

Photoluminescence properties and energy transfer of $Dy^{3+}$ and $Tm^{3+}$ co-activated $CaZrO_3$ phosphor for white LEDs

  • Li, Yezhou (Department of Materials Science, Institute of Functional and Environmental Materials, School of Physical Science and Technology, Lanzhou University) ;
  • Wang, Yuhua (Department of Materials Science, Institute of Functional and Environmental Materials, School of Physical Science and Technology, Lanzhou University)
  • Received : 2010.12.29
  • Accepted : 2011.02.17
  • Published : 2011.06.30

Abstract

Single-phased $CaZrO_3:Dy^{3+}$, $Tm^{3+}$ series have been successfully synthesized by solid-state reaction, and their luminescence properties were investigated. Under 355 nm excitation, $CaZrO_3:Dy^{3+}$ series showed characteristic emission of $Dy^{3+}$, which exhibited yellowish white color. By introducing $Tm^{3+}$ into the matrix, the emitted hue of the $Dy^{3+}$-doped sample could be easily tailored to white, and simultaneously, energy transfer from $Tm^{3+}$ to $Dy^{3+}$ was observed. The color coordinates of the optimum white-emitting sample were (0.321, 0.323), which were very close to the data of the National Television Standard Committee (0.33, 0.33). The co-activated phosphors presented good match to ultraviolet light-emitting diodes (LEDs), which revealed that they could be novel promising phosphors utilized in white LED application.

Keywords

References

  1. S. Nakamura, Appl. Phys. Lett. 64, 1687 (1994). https://doi.org/10.1063/1.111832
  2. T. Chan, R. Liu, and I. Baginskiy, Chem. Mater. 20, 1215 (2008). https://doi.org/10.1021/cm7028867
  3. J.S. Kim, P.E. Jeon, J.C. Choi, H.L. Park, S.I. Mho, and G.C. Kim, Appl. Phys. Lett. 84, 2931 (2004). https://doi.org/10.1063/1.1695441
  4. H.A. Hoppe, M. Daub, and M.C. Brohmer, Chem. Mater. 19, 6358 (2007). https://doi.org/10.1021/cm702292x
  5. W.-J. Yang, L. Luo, T.-M. Chen, and N.-S. Wang, Chem. Mater. 17, 3883 (2005). https://doi.org/10.1021/cm050638f
  6. Y. Cong, B. Li, S. Yue, Y. Liu, and W. Li, J. Phys. Chem. C Lett. 113, 493 (2009). https://doi.org/10.1021/jp8084414
  7. D.P. Dutta, R. Ghildiyal, and A.K. Tyagi, J. Phys. Chem. C 113, 16954 (2009). https://doi.org/10.1021/jp905631g
  8. W.B. Im, N.N. Fellows, S.P. DenBaars, R. Seshadri, and Y.-I. Kim, Chem. Mater. 21, 2957 (2009). https://doi.org/10.1021/cm9006876
  9. T.-S. Chan, R.-S. Liu, and I. Baginskiy, Chem. Mater. 20, 1215 (2008). https://doi.org/10.1021/cm7028867
  10. J.S. Kim, P.E. Jeon, J.C. Choi, H.L. Park, S.I. Mho, and G.C. Kim, Appl. Phys. Lett. 84, 2931 (2004). https://doi.org/10.1063/1.1695441
  11. J.S. Kim, J.Y. Kang, P.E. Jeon, Y.H. Park, J.C. Choi, H.L. Parka, G.C. Kim, and T.W. Kim, Appl. Phys. Lett. 85, 3696 (2004). https://doi.org/10.1063/1.1808501
  12. B. Liu and C. Shi, Appl. Phys. Lett. 86, 191111 (2005). https://doi.org/10.1063/1.1925778
  13. M. Jayasimhadri, B.V. Ratnam, K. Jang, and H.S. Lee, J. Am. Ceram. Soc. 93, 494 (2010). https://doi.org/10.1111/j.1551-2916.2009.03426.x
  14. N. Maruyama, T. Honma, and T. Komatsu, J. Solid State Chem. 182, 246 (2009). https://doi.org/10.1016/j.jssc.2008.10.028
  15. G. Lakshminarayana, H. Yang, and J. Qiu, J. Solid State Chem. 182, 669 (2009). https://doi.org/10.1016/j.jssc.2008.11.020
  16. H. Zhan, X. Fu, S. Niu, G. Su, and Q. Xin, Mater. Lett. 61, 308 (2007). https://doi.org/10.1016/j.matlet.2006.04.095
  17. S. Liu, G. Zhao, X. Lin, H.Ying, J. Liu, J.Wang, and G. Han, J. Solid State Chem. 181, 2725 (2008). https://doi.org/10.1016/j.jssc.2008.06.027
  18. H. Iwahara, Y. Asakura, K. Katahira, and M. Tanaka, Solid State Ionics 168, 229 (2004).
  19. H. Zhang, X. Fu, S. Niu, and Q. Xin, J. Lumin. 128, 1348 (2008). https://doi.org/10.1016/j.jlumin.2008.01.007
  20. H. Zhang, X. Fu, S. Niu, and Q. Xin, J. Alloys Compd 459, 103 (2008). https://doi.org/10.1016/j.jallcom.2007.04.259
  21. Z. Liu, Y. Liu, J. Zhang, J. Rong, L. Huang, and D. Yuan, Opt. Commun. 251, 388 (2005). https://doi.org/10.1016/j.optcom.2005.03.011
  22. Y. Shimizu, S. Sakagami, K. Goto, Y. Nakachi, and K. Ueda, Mater. Sci. Eng. B 161, 100 (2009). https://doi.org/10.1016/j.mseb.2008.11.035
  23. M.D. Gonçalves, L.S. Cavalcante, J.C. Sczancoski, J.W.M. Espinosa, P.S. Pizani, E. Longo, and I.L.V. Rosa, Opt. Mater. 31, 1134 (2009). https://doi.org/10.1016/j.optmat.2008.12.002
  24. D. Jia, J. Electrochem. Soc. 153, H198 (2006). https://doi.org/10.1149/1.2337087

Cited by

  1. Resonant energy transfer in (Eu3+, Bi3+)-codoped CaZrO3red-emitting phosphor vol.6, pp.70, 2011, https://doi.org/10.1039/c6ra13429g
  2. Experimental and theoretical study of the energetic, morphological, and photoluminescence properties of CaZrO3:Eu3+ vol.20, pp.37, 2018, https://doi.org/10.1039/c8ce00964c
  3. Synthesis, energy transfer, charge compensation and luminescence properties of CaZrO3:Eu3+, Bi3+, Li+ phosphor vol.30, pp.3, 2011, https://doi.org/10.1007/s10854-018-0505-z
  4. Luminescence properties of color-tunable YNbO4: Dy3+, Tm3+ phosphors vol.8, pp.4, 2020, https://doi.org/10.1080/21870764.2020.1815347