DOI QR코드

DOI QR Code

Organic complementary inverter and ring oscillator on a flexible substrate

  • Kim, Min-Gyu (School of Electrical Engineering and Computer Science, Interuniversity Semiconductor Research Center, Seoul National University) ;
  • Cho, Hyun-Duck (School of Electrical Engineering and Computer Science, Interuniversity Semiconductor Research Center, Seoul National University) ;
  • Kwak, Jeong-Hun (School of Electrical Engineering and Computer Science, Interuniversity Semiconductor Research Center, Seoul National University) ;
  • Kang, Chan-Mo (School of Electrical Engineering and Computer Science, Interuniversity Semiconductor Research Center, Seoul National University) ;
  • Park, Myeong-Jin (School of Electrical Engineering and Computer Science, Interuniversity Semiconductor Research Center, Seoul National University) ;
  • Lee, Chang-Hee (School of Electrical Engineering and Computer Science, Interuniversity Semiconductor Research Center, Seoul National University)
  • Received : 2010.09.09
  • Accepted : 2011.11.05
  • Published : 2011.03.31

Abstract

A complementary inverter was fabricated using pentacene and N-N -dioctyl-3,4,9,10-perylene tetracarboxylic diimide-C (PTCDI-C8) for p- and n-type transistors on a poly(ether sulfone) substrate, respectively. The mobilities of the p- and n-type transistors were 0.056 and 0.013 $cm^2$/Vs, respectively. The inverter, which was composed of p- and n-type transistors, showed a gain of 48.6 when $V_{DD}$ = -40V and at the maximum noise margin of $V_{DD}$/2. A ring oscillator was also fabricated by cascading five inverters. The five-stage ring oscillator showed the maximum output frequency of 10 kHz when $V_{DD}$ = -170 V.

Keywords

References

  1. G.H. Gelinck, H.E.A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J.B.P.H van der Putten, T.C.T. Geuns, M. Beenhakkers, J.B. Giesbers, B.H. Huisman, E.J. Meijer, E.M. Benito, F.J. Touwslager, A.W. Marsman, B.J.E. van Rens, and D.M. de Leeuw, Nat. Mater. 3, 106 (2004). https://doi.org/10.1038/nmat1061
  2. J.B. Chang,V. Liu,V. Subramanian, K. Sivula, C. Luscombe, A. Murphy, J. Liu, and J.M.J. Frechet, J.Appl. Phys. 100, 014506 (2006). https://doi.org/10.1063/1.2208743
  3. E. Cantatore, T. Geuns, A. Gruijthuijsen, G. Gelinck, S. Drews, and D.M. de Leeuw, Dig. Tech. Pap.-IEEE Int. Solid-State Circuits Conf. 49, 273 (2006).
  4. H. Klauk, M. Kalik, U. Zschieschang, F. Eder, G. Schmid, and C. Dehm, Appl. Phys. Lett. 82, 4175 (2003). https://doi.org/10.1063/1.1579870
  5. P.F. Baude, D.A. Ender, M.A. Haase, T.W. Kelley, D.V. Muyres, and S.D. Thesiss, Appl. Phys. Lett. 82, 3964 (2003). https://doi.org/10.1063/1.1579554
  6. B. Crone, A. Dodalbalapur, Y.-Y. Lin, R.W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H.E. Katz, and W. Li, Nature 403, 521 (2000). https://doi.org/10.1038/35000530
  7. H. Klauk, M. Kalik, U. Zschieschang, F. Eder, D. Rohde, G. Schmid, and C. Dehm, IEEE Trans. Electron Dev. 52, 618 (2005). https://doi.org/10.1109/TED.2005.844739
  8. B. Yoo, T. Jung, D. Basu, and A. Dodabalapur, Appl. Phys. Lett. 88, 082104 (2006). https://doi.org/10.1063/1.2177627
  9. D. Bode, K. Myny, B. Verreet, B. van der Putten, P. Bakalov, S. Steudel, S. Smout, P. Vicca, J. Genoe, and P. Heremans, Appl. Phys. Lett. 96, 133307 (2010). https://doi.org/10.1063/1.3373630
  10. S. Lee, B. Koo, J. Shin, E. Lee, H. Park and H. Kim, Appl. Phys. Lett. 88, 162109 (2006). https://doi.org/10.1063/1.2196475
  11. S. Tatemichi, M. Ichikawa, S. Kato, T. Koyama, and Y Taniguchi, Phys. Stat. Sol. 2, 49 (2008).
  12. S. D. Vusser, S. Steudel, K. Myny, J. Genoe, and P. Heremans, Appl. Phys. Lett. 88, 162116 (2006). https://doi.org/10.1063/1.2197604
  13. J. Jang, J.W. Kim, N. Park, and J. Kim, Org. Electron. 9, 481 (2008). https://doi.org/10.1016/j.orgel.2008.02.011
  14. T. A. DeMassa and Z. Cicone, in Digital Integrated Circuits (Wiley, New York, 1996), p. 342.