References
- Atkinson, A. C. (1994). Fast very robust methods for the detection of multiple outliers, Journal of the American Statistical Association, 89, 1329-1339. https://doi.org/10.2307/2290995
- Gentleman, J. F. and Wilk, M. B. (1975). Detecting outliers II: Supplementing the direct analysis of residuals, Biometrics, 31, 387-410. https://doi.org/10.2307/2529428
- Hadi, A. S. and Simonoff, J. S. (1993). Procedures for the identification of multiple outliers in linear models, Journal of the American Statistical Association, 88, 1264-1272. https://doi.org/10.2307/2291266
- Jajo, N. K. (2005). A review of Robust regression an diagnostic procedures in linear regression, Acta Mathematicae Applicatae Sinica, 21, 209-224. https://doi.org/10.1007/s10255-005-0230-2
- Kianifard, F. and Swallow, W. H. (1989). Using recursive residuals, calculated on adaptive-ordered observations, to identify outliers in linear regression, Biometrics, 45, 571-885. https://doi.org/10.2307/2531498
- Kianifard, F. and Swallow, W. H. (1990). A Monte Carlo comparison of five procedures for identifying outliers in linear regression, Communications in Statistics, 19, 1913-1938. https://doi.org/10.1080/03610929008830300
- Marasinghe, M. G. (1985). A multistage procedure for detecting several outliers in linear regression, Technometrics, 27, 395-399. https://doi.org/10.2307/1270206
- Paul, S. R. and Fung, K. Y. (1991). A Generalized extreme studentized residual multiple-outlier-detection procedure in linear regression, Technometrics, 33, 339-348. https://doi.org/10.2307/1268785
- Pena, D. and Yohai, V. J. (1999). A fast procedure for outlier diagnostics in linear regression problems, Journal of the American Statistical Association, 94, 434-445. https://doi.org/10.2307/2670164
- Rousseeuw, P. J. and Zomeren, B. C. (1990). Unmasking multivariate outliers and leverage points, Journal of the American Statistical Association, 85, 633-639. https://doi.org/10.2307/2289995
- Tierney, L. (1990). Lisp-Stat, John Wiley & Sons, New York.
Cited by
- Outlier detection using Grubb test and Cochran test in clinical data vol.23, pp.4, 2012, https://doi.org/10.7465/jkdi.2012.23.4.657
- Clustering Observations for Detecting Multiple Outliers in Regression Models vol.25, pp.3, 2012, https://doi.org/10.5351/KJAS.2012.25.3.503