DOI QR코드

DOI QR Code

Visualization for Experimental Designs

실험계획의 시각화

  • Received : 20110500
  • Accepted : 20110800
  • Published : 2011.10.31

Abstract

The lecture of the experimental designs consists of two main part-experimental designs and model analysis. Mostly, the progress of the visualization has been made on a model analysis. As the visualization of experimental designs, we can consider the visualization of Latin squares, supersaturated designs, and balanced incomplete block designs. We can propose the design plots as well as use the scatterplots and the scatterplot matrices for the visualization of experimental designs. Through the visualization of experimental designs, we can use the synergy effect in teaching the lecture of the experimental designs.

실험계획법의 강의내용은 크게 두 개의 파트인 실험계획과 모형분석으로 대별되는데 시각화 작업은 주로 모형분석 중심으로 이루어져 왔다. 실험계획법의 강의내용에 대한 시각화 작업의 일환으로 우리는 실험계획의 시각화를 라틴 방격법의 시각화, 초포화계획법의 시각화, 불완비블럭계획법의 시각화로 나누어 고려하여 볼 수 있다. 실험계획을 시각화하는 작업을 위하여 우리는 계획그림을 제안 할 수 있고 기존의 산점도나 산점도행렬을 사용할 수 있다. 이러한 실험계획의 시각화를 통하여 우리는 이론 중심의 실험계획법 강의에 그림들을 삽입함으로써 실험계획법 수업에서의 시너지효과를 얻을 수 있다.

Keywords

References

  1. 김영일, 장대흥 (2010). 초포화계획을 평가하기 위한 그래픽방법, <응용통계연구>, 23, 167-178. https://doi.org/10.5351/KJAS.2010.23.1.167
  2. 장대흥 (2010). 반응표면실험계획을 평가하기 위한 동적분위수그림, <응용통계연구>, 23, 285-293. https://doi.org/10.5351/KJAS.2010.23.2.285
  3. Bailey, R. A., Cameron, P. J. and Connelly, R. (2008). Sudoku, gerechte designs, resolutions, affine space, spreads, reguli, and Hamming codes, American Mathematical Monthly, 115, 383-404. https://doi.org/10.1080/00029890.2008.11920542
  4. Barton, R. R. (1998). Design-plots for factorial and fractional factorial designs, Journal of Quality Technology, 30, 40-54. https://doi.org/10.1080/00224065.1998.11979818
  5. Barton, R. R. and Schruben, L. W. (1994). Graphical methods for comparing confounding in two or more designs, Communications in Statistics-Simulation and Computation, 23, 953-971. https://doi.org/10.1080/03610919408813211
  6. Giovannitti-Jensen, A. and Myers, R. H. (1989). Graphical assessment of the prediction capability of response surface designs, Technometrics, 31, 159-171. https://doi.org/10.2307/1268814
  7. Hyndman, T. (2009). Math art: Latin square, http://tylo42.com/latin square.
  8. Khuri, A. I. (1997). Quantile dispersion graphs for analysis of variance estimates of variance components, Journal of Applied Statistics, 24, 711-722. https://doi.org/10.1080/02664769723440
  9. Khuri, A. I., Kim, H. J. and Um, Y. (1996). Quantile plots of the prediction variance for response surface designs, Computational Statistics and Data Analysis, 22, 395-407. https://doi.org/10.1016/0167-9473(95)00058-5
  10. Liu, Y. and Liu, M. (2011). Construction of optimal supersaturated design with large number of levels, Journal of Statistical Planning and Inference, 141, 2035-2043. https://doi.org/10.1016/j.jspi.2010.12.015
  11. Montgomery, D. C. (2009). Design and Analysis of Experiments, 7th ed., Wiley, New York.
  12. Zahran, A., Anderson-Cook, C. M. and Myers, R. H. (2003). Fraction of design space to assess the prediction capability of response surface designs, Journal of Quality Technology, 35, 377-386. https://doi.org/10.1080/00224065.2003.11980235