DOI QR코드

DOI QR Code

A New Structural Model for Predicting Effective Thermal Conductivity of Variably Saturated Porous Materials

포화도에 따른 다공성 매질의 유효열전도도 변화 예측 모델

  • Cha, Jang-Hwan (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Koo, Min-Ho (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Keehm, Young-Seuk (Department of Geoenvironmental Sciences, Kongju National University)
  • 차장환 (공주대학교 지질환경과학과) ;
  • 구민호 (공주대학교 지질환경과학과) ;
  • 김영석 (공주대학교 지질환경과학과)
  • Received : 2011.07.05
  • Accepted : 2011.09.05
  • Published : 2011.10.31

Abstract

Based on Maxwell-Eucken(ME) model, which is one of structural models, a new model for predicting the effective thermal conductivity of variably saturated porous materials is proposed. The new model is a linear combination of three ME models having matrix, water, and air as a continuous phase. The coefficient of the corresponding linear equation is defined by a parameter referred to as 'the continuity coefficient', which provides a relative degree of continuity of each phase. The continuity coefficient of matrix is assumed to be linearly proportional to porosity. The model can be linear or nonlinear depending on how the continuity coefficients of water and air vary with water saturation. The feasibility of the proposed model was examined by both numerical and experimental results. Both linear and nonlinear models showed a high accuracy of prediction with $R^2$ values of 0.86-0.98 and 0.88-0.99, respectively. The numerical and experimental results also showed that the continuity coefficient of matrix was linearly proportional to porosity. Therefore, the proposed prediction model can be effectively used to estimate effective thermal conductivity of unsaturated porous materials by measuring porosity, water content and mineralogical compositions of matrix.

구조모델의 하나인 Maxwell-Eucken(ME) 모델을 이용하여 불포화 다공성 매질의 유효열전도도를 예측할 수 있는 새로운 모델을 제시하였다. 제시된 모델은 기질, 물 그리고 공기가 각각 연속상으로 존재하는 경우에 해당하는 3개 ME모델의 선형조합으로 표현되며, 매질 내에서 각 성분의 상대적 연속성 정도를 나타내는 '연속성계수'의 개념을 도입하여 선형방정식의 계수로 이용하였다. 기질의 연속성계수는 공극률과 선형의 관계를, 물과 공기의 연속성계수는 포화도와 선형 또는 비선형의 관계를 갖는 것으로 가정하였다. 공극구조가 알려진 3개 시료에 대한 열전달 모사 결과와 3개 시료의 열전도도 실험 결과를 이용하여 제시된 모델의 신뢰성을 평가하였다. 6개 시료에 대한 모델 예측값의 결정계수($R^2$)는 선형모델의 경우 0.86-0.98, 비선형모델의 경우 0.88-0.99로 나타나 모델의 예측 신뢰도가 매우 높은 것으로 분석되었다. 또한, 6개 시료에 대한 분석 결과를 이용하여 기질의 연속성계수와 공극률과의 관계식을 제시하였다. 따라서 본 예측모델은 기질의 열전도도, 공극률 및 포화도로부터 불포화 다공성 매질의 유효열전도도를 계산하는 데 이용될 수 있다.

Keywords

References

  1. 김형찬, 이사로, 송무영, 2004, 남한지역 지질특성과 지열류량의 상호 관련성. 자원환경지질, 37, 391-400.
  2. 박정민, 김형찬, 이영민, 심병완, 송무영, 2009, 한국의 암석 열물성. 자원환경지질, 42, 591-598.
  3. 손병후, 2008, 지중열교환기 뒤채움재로 사용되는 모래-물혼합물의 열전도도 예측. 설비공학논문집, 20, 614-623.
  4. 유건상, 2010, 이산화탄소 주입에 따른 암석의 물성변화 수치모델링. 공주대학교 석사학위논문, 64 p.
  5. 조원진, 이재완, 권상기, 2010, 고준위폐기물처분장 완충재 및 뒷채움재의 열전도도 예측을 위한 관계식. 터널과 지하공간, 20, 284-291.
  6. 차장환, 구민호, 김영석, 2010, 구조모델을 이용한 다공성 매질의 유효열전도도 분석. 지하수토양환경, 15, 91-98.
  7. 차장환, 구민호, 김영석, 이영민, 2011, 구조모델을 이용한 암석의 유효열전도도 분석. 자원환경지질, 44, 171-180. https://doi.org/10.9719/EEG.2011.44.2.171
  8. 차장환, 안선준, 구민호, 김형찬, 송윤호, 서명석, 2008, 토양의 공극률 및 함수비가 열전도도에 미치는 영향. 지하수토양환경, 13, 27-36.
  9. Carson, J.K., 2006, Review of effective thermal conductivity models for foods. International Journal of Refrigeration, 29, 958-967. https://doi.org/10.1016/j.ijrefrig.2006.03.016
  10. Carson, J.K., Lovatt, S.J., Tanner, D.J., and Cleland, A.C., 2003, An analysis of the influence of material structure on the effective thermal conductivity of theoretical porous materials using finite element simulations. International Journal of Refrigeration, 26, 873-880. https://doi.org/10.1016/S0140-7007(03)00094-X
  11. Carson, J.K., Lovatt, S.J., Tanner, D.J., and Cleland, A.C., 2005, Thermal conductivity bounds for isotropic, porous materials. International Journal of Heat and Mass Transfer, 48, 2150-2158. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.032
  12. Carson, J.K., Lovatt, S.J., Tanner, D.J., and Cleland, A.C., 2006, Predicting the thermal conductivity of unfrozen, porous food. Journal of Food Engineering, 75, 297-307. https://doi.org/10.1016/j.jfoodeng.2005.04.021
  13. Clauser, C. and Huenges, E., 1995, Thermal conductivity of rocks and minerals. American Geophysical Union, 105-126.
  14. Gori, F. and Corasaniti, S., 2003, Experimental measurements and theoretical prediction of the thermal conductivity of two- and three-phase water/olivine systems. International Journal of Thermophysics, 24, 1339-1353. https://doi.org/10.1023/A:1026107319415
  15. Hill, M.C., 1990, Preconditioned conjugate-gradient 2 (PCG2), A computer program for solving groundwater flow equations. US Geological Survey Water-Resources Investigations Report, 90-4048, 43 p.
  16. Hinkel, K.M., 1997, Estimating seasonal values of thermal diffusivity in thawed and frozen soils using temperature time series. Cold Regions Science and Technology, 26, 1-15. https://doi.org/10.1016/S0165-232X(97)00004-9
  17. Hinkel, K.M., Outcalt, S.I., and Nelson, F.E., 1990, Temperature variation and apparent thermal diffusivity in the refreezing active layer, Toolik Lake, Alaska. Permafrost Periglacial Process, 1, 265-274. https://doi.org/10.1002/ppp.3430010306
  18. Keehm, Y., Mukerji, T., and Nur, A., 2004, Permeability prediction from thin sections: 3D reconstruction and lattice- Boltzmann flow simulation. Geophysical Research Letters, 31, L04606.
  19. Keehm, Y., Sternlof, K., and Mukerji, T., 2006, Computational estimation of compaction band permeability in sandstone. Geosciences Journal, 10, 499-505. https://doi.org/10.1007/BF02910443
  20. Kersten, M.S., 1949, Laboratory research for the determination of the thermal properties of soils. Research laboratory Investigations, Engineering Experiment Station, Technical Report 23, University of Minnesota, Minneapolis, Minn, USA, 235 p.
  21. Ladd, A., 1994, Numerical simulation of particulate suspensions via a discretized Boltzmann equation: Part 1. Theoretical foundation. Journal of Fluid Mechanics, 271, 285-309. https://doi.org/10.1017/S0022112094001771
  22. Lu, S., Ren, T., Gong, Y., and Horton, R., 2007, An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Science Society of America Journal, 71, 8-14. https://doi.org/10.2136/sssaj2006.0041
  23. Mattea, M., Urbicain, M.J., and Rotstein, E., 1986, Prediction of thermal conductivity of vegetable foods by the effective medium theory. Journal of Food Science, 51, 113-115. https://doi.org/10.1111/j.1365-2621.1986.tb10848.x
  24. Maxwell, J.C., 1954, A treatise on electricity and magnetism. Dover Publications Inc., NY, USA, 500 p.
  25. Presley, M.A. and Christensen, P.R., 1997, Thermal conductivity measurements of particulate materials: 2. Result. Journal of Geophycal Research, 102, 6551-6566. https://doi.org/10.1029/96JE03303
  26. Singh, D.N. and Devid, K., 2000, Generalized relationships for estimating soil thermal resistivity. Experimental Thermal and Fluid Science, 22, 133-143. https://doi.org/10.1016/S0894-1777(00)00020-0
  27. Usowicz, B., Lipiec, J., and Ferrero, A., 2006, Prediction of soil thermal conductivity based on penetration resistance and water content or air-filled porosity. International Journal of Heat and Mass Transfer, 49, 5010-5017. https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.023
  28. Wang, J., Carson, J.K., North, M.F., and Cleland, D.J., 2006, A new approach to modelling the effective thermal conductivity of heterogeneous materials. International Journal of Heat and Mass Transfer, 49, 3075- 3083. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.007
  29. Wang, J., Carson, J.K., North, M.F., and Cleland, D.J., 2008, A new structural model of effective thermal conductivity for heterogeneous materials with co-continuous phases. International Journal of Heat and Mass Transfer, 51, 2389-2397. https://doi.org/10.1016/j.ijheatmasstransfer.2007.08.028