DOI QR코드

DOI QR Code

잔류응력 효과를 고려한 고혈압 상태에 있는 혈관벽 내의 응력분포에 대한 연구

A Study on Effect of Residual Stress on Stress Distribution of Arterial Walls Under High Blood Pressure

  • 최재우 (단국대학교 기계공학과) ;
  • 최덕기 (단국대학교 기계공학과)
  • 투고 : 2011.05.02
  • 심사 : 2011.10.12
  • 발행 : 2011.11.01

초록

최근 생활 환경의 변화로 혈관계 질병으로 고통 받는 사람들이 늘어가고 있다. 이에 따라 질병을 치료하기 위해 여러 가지 시술을 하게 되는데 있어서 혈관의 역학적인 분석과 해석이 확보되어야 한다. 본 논문에서는 초탄성 이론을 기초로 하여 탄성 대변형에서의 혈관의 역학적인 거동에 대해 알아 보았다. 이를 통하여 정상혈압과 고혈압일 때 혈관에 작용하는 응력과 열림각으로 나타낼 수 있는 잔류 응력의 효과가 각 방향 응력분포에 미치는 영향에 대해 연구하였다. 그 결과 잔류응력 효과를 적용시켰을 때 혈관 벽내에 작용하는 최대응력은 잔류응력 효과가 없을 경우와 비교하여 약 50%응력 감소가 나타남을 확인할 수 있고, 고혈압의 경우 정상혈압일 때보다 2배정도의 큰 응력이 혈관벽에 작용함을 확인 할 수 있었다.

Due to recent changes in living conditions, people who suffer from vascular disease have been increasing. As a result, several kinds of procedures to treat diseases of the blood vessels are being carried out and the epidemiological analysis and interpretation is needed. In this paper, the mechanical behavior of blood vessels based on hyperelastic model were evaluated. The stress distributions in the arterial walls subjected to both normal blood pressure and high blood pressure are studied along with different opening angles representing as the effect of the residual stress. As a result, when applied to residual stress effects in blood vessels to act maximum stress compared to as the absence of residual stress effect about 50% stresses can be reduced. When high blood pressure was the normal blood pressure acting on the blood vessel wall that twice stress can be confirmed.

키워드

참고문헌

  1. Holzapfel, G. A., Gasser, T. C. and Ogden, R. W., 2000, "A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models," Journal of Elasticity, Vol. 61, No. 1-3, pp. 1-48. https://doi.org/10.1023/A:1010835316564
  2. Fung, Y. C,. Fronek, K. and Patitucci, P., 1989, "Pseudoelasticity of Arteries and the Choice of Its Mathematical Expression," Am. J. Physiol, Vol. 237, No. 5 pp. H620-H631.
  3. Vossoughi, J., Hedjazi, Z. and Boriss, F.S.I., 1993, "Intimal Residual Stress and Strain in Large Arteries," 1993 ASME Advances in Bioengineering, pp. 434-437.
  4. Silver, F. H., Christiansen, D. L. and Buntin, C. M., 1989, "Mechanical Properties of the Aorta : A Review," Critical Reviews in Biomed. Eng., Vol. 17, No. 4, pp. 323-358.
  5. Choi, D. K., 2007, "Introduction to Continuum Mechanics Using Tensorial Approach," Intervision, Seoul.
  6. Belytschko, T., Liu, W. K. and Moran, B., 2000, "Nonlinear Finite Elements for Contua and Structures," John Wiley&Sons, England.
  7. Hughes, T. J. R., 1987, "The Finite Element Method : Linear Static and Dynamic Finite Element Anlysis," Prentice-Hall, Englewood Cliffs, NJ
  8. Humphrey, J. D., 1995, "Mechanics of Arterial Wall : Review and Directions," Critical Reviews in Biomed. Eng., Vol. 23, pp. 1-162.
  9. Choung, C. J. and Fung, Y. C., 1983, "Three- Dimensional Stress Distribution in Arteries," J.Biomech. Eng., Vol. 105, pp. 268-274. https://doi.org/10.1115/1.3138417
  10. Fung, Y. C. and Liu, S. Q., 1989, "Change of Residual Strains in Arteries Due to Hypertrophy Caused by Aortic Constriction," Circulation Research, vol 65, pp. 1340-1349. https://doi.org/10.1161/01.RES.65.5.1340
  11. Holzapfel, G. A., 2000, "Nonlinear Solid Mechanics. A Continuum Approach for Engineering," Wiley, Chichester.
  12. Von Maltzahn, W. W. and Warriyar, R. G., 1984, "Experimental Measurements of Elastics Properties of Media and Adventitia of Bovine Carotid Arteries," J.Biomech. Eng., Vol. 17, pp. 839-847. https://doi.org/10.1016/0021-9290(84)90142-8
  13. Xie, J., Zhou, J. and Fung, Y. C., 1995, "Bending of Blood Vessel Wall : Stress-Strain Laws of the Intima-Media and Adventitia Layers," J.Biomech. Eng., Vol. 117, No. 11, pp. 136-145. https://doi.org/10.1115/1.2792261
  14. Yu, Q., Zhou, J. and Fung, Y. C., 1993, "Neutral Axis Location in Bending and Young's Modulus of Different Layers of Arterial Wall," Am. J. Physiol., Vol.265, No. 1, pp. H52-H60.