DOI QR코드

DOI QR Code

Blood Flow and Pressure Evaluation for a Pulsatile Conduit-Shaped Ventricular Assist Device with Structural Characteristic of Conduit Shape

관형의 구조적 특징을 갖춘 박동형 관형 심실보조장치의 혈류, 혈압 평가

  • Kang, Seong-Min (School of Mechanical and Biomedical Engineering, Kangwon Nat'l Univ.) ;
  • Choi, Seong-Wook (School of Mechanical and Biomedical Engineering, Kangwon Nat'l Univ. / Medical & Bio-Material Research Center, Kangwon Nat'l Univ.)
  • 강성민 (강원대학교 기계의용공학과) ;
  • 최성욱 (강원대학교 기계의용공학과/의료&바이오 융복합 연구사업단)
  • Received : 2011.04.28
  • Accepted : 2011.08.29
  • Published : 2011.11.01

Abstract

The use of a ventricular assist device (VAD) can raise the one-year survival rate without cardiac transplantation from 25% to 52%. However, malfunction of the VAD system causes 6% of VAD patients' deaths, which could possibly be avoided through the development of new VADs in which VAD malfunctions do not affect the patient's heart movement or hemodynamic state. A conventional VAD has an impeller or vane for propelling blood that can allow blood to regurgitate when the propelling force is weaker than the aortic pressure. In this paper, we developed a new pulsatile conduit-shaped VAD that has two valves. This device removes the possibility of blood regurgitation and has a small stationary area even when the pumping force is extremely weak. We estimated the characteristics of the device by measuring the outflow and the pressure of the pump in in-vitro and in-vivo experiments.

심실보조장치는 말기 심부전환자에게 심장이식수술 없이 1 년 생존율을 25%에서 52%까지 증가 시킬 수 있는 유일한 장치이다. 하지만 심실보조장치 이식 후 1 년이 이내에 사망하는 원인 중 기기의 고장으로 인한 사망률이 6%를 차지하기 때문에 심실보조장치의 고장이 환자의 심장 움직임과 혈류 역학적인 상태에 영향을 주지 않는 새로운 방법이 필요하다. 기존의 심실보조장치는 원심형, 축심형으로 혈액을 박출해 주는 방식이어서 동맥압 보다 박출하는 압력이 낮을 때 혈액의 역류가 일어나는 문제점이 있다. 본 논문에서는 박출 압력이 약할 때, 2 개의 밸브에 의하여 혈액의 역류를 방지하고 관형태의 구조에 의해 혈액의 정체량을 줄일 수 있는 새로운 박동형 관형 심실보조장치를 개발하였으며, 체외실험과 동물실험으로 박출량과 펌프의 압력을 측정하여 그 특성을 평가하였다.

Keywords

References

  1. Rose, E.A., Gelijns, A.C., Moskowitz, A.J., Hetjan, D.F., Stevenson, L.W., Dembitsky, W., Log, J.W., Ascheim, D.D., Tierney, A.R., Levitan, R.G., Watson, J.T. and Meier, P.M., 2001, "Long-Term Use of a Left Ventricular Assist Device for End-Stage Heart Failure," N Engl J Med, Vol. 345, pp. 1435-1443. https://doi.org/10.1056/NEJMoa012175
  2. Moskowitz, A.J., Weinberg, A.D., Oz, M.C. and Williams, D.L., 1997, "Quality of Life with an Implanted Left Ventricular Assist Device," Ann Thorac Surg, Vol. 64, pp. 1764-1769. https://doi.org/10.1016/S0003-4975(97)01000-X
  3. Saughter, M.S., Joseph, J.G., Carmano, C.A., Russell, S.D., Conte, J.V., Feldman, D., Sun, B., Tatooles, A.J., Delgado, R.M., Long, J.W., Wozniak, T.C., Ghummam, W., Farrar, D.J. and Frazier, O.H., 2009, "Advanced Heart Failure Treated with Continuous-Flow Left Ventricular Assist Device," N Engl J Med, Vol. 361, pp. 2241-2251. https://doi.org/10.1056/NEJMoa0909938
  4. DeRose, J.J., Umana, J.P., Argenziano, M., Catanese, K.A., Levin, H.R., Sun, B.C., Rose, E.A. and Oz, M.C., 1997, "Improved Results for Postcardiotomy Cardiogenic Shock with the Use of Implantable Left Ventricular Assist Device," Ann Thorac Surg, Vol. 64, pp. 1757-1762. https://doi.org/10.1016/S0003-4975(97)01107-7
  5. Segreti, J.A., Marsh, K.C., Polakowski, J.S. and Fryer, R.M., 2008, "Evoked Changes in Cardiovascular Function in Rats by Infusion of Levosimendan, OR-1896 [(R)-N-(4- (4-Methyl-6-oxo-1,4,5,6-tetrahydropyridazin-3-yl)phenyl) acetamide], OR-1855 [(R)-6-(4 Aminophenyl)-5-methyl- 4,5-dihydropyridazin-3(2H)-one], Dobutamine, and Milrinone: Comparative Effects on Peripheral Resistance, Cardiac Output, dP/dt, Pulse Rate, and Blood Pressure," JPET, Vol. 325, pp. 331-340. https://doi.org/10.1124/jpet.107.132530
  6. Lietz, K.., Long, J.W., Kfoury, A.G., Slaughter, M.S., Silver, M.A., Milano, C.A., Rogers, J.G., Naka, Y., Mancini, D. and Miller, L.W., 2007, "Outcome of Left Ventricular Assist Device Implantation as Destination Therapy in the Post-REMATCH Era Implication for Patient Selection," Circulation, Vol. 116, pp. 497-505 https://doi.org/10.1161/CIRCULATIONAHA.107.691972
  7. Klotz, S., Deng, M.C., Stypmann, J., Roetker, J., Wilhelm, M.J., Hammel, D., Scheld, H.H. and Schmid, C., 2004, "Left Ventricular Pressure and Volume Unloading During Pulsatile Versus Nonpulsatile Left Ventricular Assist Device Support," Ann Thorac Surg, Vol. 77, pp. 143-150. https://doi.org/10.1016/S0003-4975(03)01336-5
  8. Feller, E.D., Sorensen, E.N., Haddad, M., Pierson, R.N., Johnson, F.L., J Brown,.M. and Griffith, B.P., 2007, "Clinical Outcomes Are Similar in Pulsatile and NonPulsatile Left Ventricular Assist Device Recipients," Ann Thorac Surg, Vol. 83, pp. 1082-1088. https://doi.org/10.1016/j.athoracsur.2006.10.034
  9. Fukamachi, K., Mcarthy, P.M., Smedira, N.G., Vargo, R.L., Starling, R.C. and Young, J.B., 1999, "Preoperative Risk Factors for Right Ventricular Failure After Implantable Left Ventricular Assist Device Insertion," Ann Thorac Surg, Vol. 68, pp. 2181-2184. https://doi.org/10.1016/S0003-4975(99)00753-5
  10. Dembitsky, W.P., Tector, A.J., Park, S., Moskowitz, A.J., Gelijns, A.C., Ronan, N.S., Piccione, W., Holman, W.L., Furukawa, S., Frazier, O.H., Weinberg, A.D., Heatley, G., Poirier, V.L., Damme, L. and Long, J.W., 2004, "Left Ventricular Assist Device Performance with Long-Term Circulatory Support: Lessons from the REMATCH Trial," Ann Thorac Surg, Vol. 78, pp. 2123-2130. https://doi.org/10.1016/j.athoracsur.2004.02.030
  11. Matthews, J.C., Koelling, T.M., Pagani, F.D. and Aaronson, K.D., 2008, "The Right Ventricular Failure Risk Score," J Am Coll Cardiol, Vol. 51, pp. 2163-2172. https://doi.org/10.1016/j.jacc.2008.03.009
  12. Potapov, E.V., Loebe, M., Nasseri, B.A., Sinawski, H., Kostr, A., Kuppe, H., Noon, G.P., Debakey, M.E. and Hetzer, R., 200, "Pulsatile Flow in Patient with a Novel NonPulsatile Implantable Ventricular Assist Device," Circulation, Vol.102, pp. 183-187. https://doi.org/10.1161/01.CIR.102.24.e183
  13. Leonard, E.F., 1972, "The Role of Flow in Thrombogenesis," Bull N Y Acad Med, Vol. 48(2), pp.273-280.
  14. Maeda, T., Tanoue, Y., Nakashima, A. and Tominaga, R., 2010, "Atypical Presentation of an Apical Pseudoaneurysm in a Patient on Prolonged Left Ventricular Mechanical Support," Thoracic Surgery, Vol. 10, pp. 350-351.
  15. Giridharn, G.A., Lederer, C., Berthe, A., Goubergrits, L., Hutzenlaub, J., Dowling, R.D., Spence, P.A. and Koenig, S.C., 2011, "Flow Dynamics of a Novel Counterpulsation Device Characterized by CFD and PIV Modeling," Elsevier, Vol. 10, pp. 1016-1025.
  16. Donovan, F.M., 1975, "Design of a Hydraulic Analog of the Circulatory System for Evaluating Artificial Heart," Artif Organs, Vol. 3, pp. 439-449.

Cited by

  1. Detection of Premature Ventricular Contractions on a Ventricular Electrocardiogram for Patients With Left Ventricular Assist Devices vol.38, pp.12, 2014, https://doi.org/10.1111/aor.12306
  2. Estimation of Stroke Volume Based on Air Pressure in Air Tube with Pneumatic Pulsatile Ventricular Assist Device vol.38, pp.12, 2014, https://doi.org/10.3795/KSME-B.2014.38.12.971
  3. Biocompatibility Evaluation of Bent-Type Left Ventricular Assist Device During Long-Term Animal Experiment and Emergent Situation vol.38, pp.9, 2014, https://doi.org/10.3795/KSME-B.2014.38.9.739
  4. Outflow monitoring of a pneumatic ventricular assist device using external pressure sensors vol.15, pp.1, 2016, https://doi.org/10.1186/s12938-016-0204-z
  5. Windkessel model of hemodynamic state supported by a pulsatile ventricular assist device in premature ventricle contraction vol.17, pp.1, 2018, https://doi.org/10.1186/s12938-018-0440-5