References
- Hu, X., Zhang, Q., Zhao, Z., Tian, Y., Liu, X. and Wang, G., 2006, "Application of Approximation Full- Load Distribution Method to Pass Scheduling on Plate Mill with Hydro-bending System," J. Iron and Steel Res. Int., Vol. 13, pp.22-26.
- Mantyla, P., Korhonen, R. and Jonsson, N. G., 1992, "Improved Thickness and Shape Accuracy with Advanced Pass Scheduling in Plate Rolling," J. Mat. Proc. Tech., Vol. 34, pp.255-263. https://doi.org/10.1016/0924-0136(92)90115-9
- Chun, M. S., Yi, J. J. and Moon, Y. H., 2001, "Application of Neural Networks to Predict the Width Variation in Plate Mill," J. Mat. Proc. Tech., Vol. 111, pp.146-149. https://doi.org/10.1016/S0924-0136(01)00499-X
- Chun , M. S. and Moon, Y. H., 2000, "Optimization of the Amount of Edging to Increase Rolling Yields in a Plate Mill," J. Mat. Proc. Tech., Vol.104, pp.11-16. https://doi.org/10.1016/S0924-0136(00)00558-6
- Park , J. J. and Lee, S.J., 2003, "Design of Rolling Pass Schedules to Improve Grain-size Uniformity in Thickness," J. Mat. Proc. Tech., Vol.140, pp.454-459. https://doi.org/10.1016/S0924-0136(03)00764-7
- Hong, C. P. and Park, J. J., 2003, "Design of Pass Schedule for Austenite Grain Refinement in Plate Rolling of a Plain Carbon Steel," J. Mat. Proc. Tech., Vol.143-144, pp.758-763. https://doi.org/10.1016/S0924-0136(03)00363-7
- Dyja, H. and Korczak, P., 1999, "The Thermalmechanical and Microstructural Model for the FEM Simulation of Hot Plate Rolling," J. Mat. Proc. Tech., Vol.92-93, pp.463-467. https://doi.org/10.1016/S0924-0136(99)00215-0
- Philipp, M., Schwenzfeier, W., Fisher, F. D., Wodlinger R. and Fishcher, C., 2007, "Front End Bending in Plate Rolling Influenced by Circumferential Speed Mismatch and Geometry," J. Mat. Proc. Tech., Vol.184, pp.224-232. https://doi.org/10.1016/j.jmatprotec.2006.11.027
- Nilsson, A., 2001, "Front-end Bending in Plate Rolling," Scan. J. Metal., Vol.30, pp.337-344. https://doi.org/10.1034/j.1600-0692.2001.300510.x
- Park, B. H. and Hwang, S. M., 1997, "Analysis of Front End Bending in Plate Rolling by the Finite Element Method," J. Manuf. Sci. Eng., Vol.119, pp.314-232. https://doi.org/10.1115/1.2831109
- Dyja, H., Korczak, P., Pilarczyk, J. W. and Grzybowski, J., 1994, "Theoretical and Experimental Analysis of Plates Asymmetric Rolling," J. Mat. Proc. Tech., Vol.45, pp.167-172. https://doi.org/10.1016/0924-0136(94)90336-0
- Salimi, M. and Sassani, F., 2002, "Modified Slab Analysis of Asymmetrical Plate Rolling," Int. J. Mech. Sci., Vol. 44, pp.1999-2023. https://doi.org/10.1016/S0020-7403(02)00043-7
- Li, X., Du, F., Wang, M. and Wu, J., 2005, "FEM Analysis of Geometry Control of the Plate Head in the Vertical-horizontal Rolling Processes," China Mech. Eng., Vol.16, pp.712-715.
- Yoshiharu, D., Michihiko, H., Hidehito, F., Daisuke, M., Hirokazu, T. and Toshiro, N., 2000, "Development of Camber Meter in Plate Rolling," Papers of Tech. Meeting on Metal Indus. Div., pp.29-32.
- Shida, S., 1969, "Empirical Formulation of Flowstress of Carbon Steels Resistance to Deformation of Carbon Steels at Elevated Temperature. 2nd Report," Journal of the Japan Society for Technology of Plasticity, Vol.10, pp.610-617.
- Buckingham, E., 1914, "On Physically Similar Systems: Illustrations of the Use of Dimensional Equations," Phys. Rev., Vol. 4, No. 4, pp.345-376. https://doi.org/10.1103/PhysRev.4.345
- Ginzburg, V.B., 1989, Steel-Rolling Technology - Theory and Practice, Marcel Dekker Inc., New York and Basel.