DOI QR코드

DOI QR Code

Prediction of Width-Direction Asymmetric Deformation Behavior and Its Setup Model in Plate Rolling

후판 압연공정에서 폭방향 비대칭 변형거동 예측 및 설정모델에 관한 연구

  • Received : 2011.05.18
  • Accepted : 2011.08.23
  • Published : 2011.11.01

Abstract

Thick plates produced by the rolling process are used as the basic elements of ship structures. In this paper, we present a setup model for controlling the asymmetric factors causing plate bending in the width direction during plate rolling. A series of three-dimensional finite element analyses is conducted to predict the relationship between various asymmetric factors and plate bending. The setup model is developed by performing regression on the relationship to produce linear equations with several nondimensional parameters. The setup model is verified with a pilot rolling test in which variations in thickness and temperature differences in the width direction exist. The results show that the bending curvatures predicted by the model are in fairly good agreement with the measured results for those asymmetric factors.

선박 건조를 위한 기본 자재인 후판은 압연공정을 통해 생산된다. 본 논문에서는 후판압연 중에 발생하는 폭방향 휨을 일으키는 비대칭 요인들을 제어할 수 있는 설정모델을 제시한다. 일련의 삼차원 유한요소해석을 통해서 휨과 비대칭 요인 사이의 관계를 예측한다. 그 관계를 무차원 변수로 이루어진 선형 방정식으로 수식화 시킴으로써 설정모델을 도출한다. 소재 폭방향으로 두께 편차와 온도차이가 있는 경우에 대해서 파이롯트 압연 시험으로 통해서 설정모델의 정도를 검증한다. 본 모델에 의해 예측된 휨 곡률이 각각의 비대칭 요인들에 의해 측정된 휨 곡률과 상당히 일치하는 결과를 보여 주었다.

Keywords

References

  1. Hu, X., Zhang, Q., Zhao, Z., Tian, Y., Liu, X. and Wang, G., 2006, "Application of Approximation Full- Load Distribution Method to Pass Scheduling on Plate Mill with Hydro-bending System," J. Iron and Steel Res. Int., Vol. 13, pp.22-26.
  2. Mantyla, P., Korhonen, R. and Jonsson, N. G., 1992, "Improved Thickness and Shape Accuracy with Advanced Pass Scheduling in Plate Rolling," J. Mat. Proc. Tech., Vol. 34, pp.255-263. https://doi.org/10.1016/0924-0136(92)90115-9
  3. Chun, M. S., Yi, J. J. and Moon, Y. H., 2001, "Application of Neural Networks to Predict the Width Variation in Plate Mill," J. Mat. Proc. Tech., Vol. 111, pp.146-149. https://doi.org/10.1016/S0924-0136(01)00499-X
  4. Chun , M. S. and Moon, Y. H., 2000, "Optimization of the Amount of Edging to Increase Rolling Yields in a Plate Mill," J. Mat. Proc. Tech., Vol.104, pp.11-16. https://doi.org/10.1016/S0924-0136(00)00558-6
  5. Park , J. J. and Lee, S.J., 2003, "Design of Rolling Pass Schedules to Improve Grain-size Uniformity in Thickness," J. Mat. Proc. Tech., Vol.140, pp.454-459. https://doi.org/10.1016/S0924-0136(03)00764-7
  6. Hong, C. P. and Park, J. J., 2003, "Design of Pass Schedule for Austenite Grain Refinement in Plate Rolling of a Plain Carbon Steel," J. Mat. Proc. Tech., Vol.143-144, pp.758-763. https://doi.org/10.1016/S0924-0136(03)00363-7
  7. Dyja, H. and Korczak, P., 1999, "The Thermalmechanical and Microstructural Model for the FEM Simulation of Hot Plate Rolling," J. Mat. Proc. Tech., Vol.92-93, pp.463-467. https://doi.org/10.1016/S0924-0136(99)00215-0
  8. Philipp, M., Schwenzfeier, W., Fisher, F. D., Wodlinger R. and Fishcher, C., 2007, "Front End Bending in Plate Rolling Influenced by Circumferential Speed Mismatch and Geometry," J. Mat. Proc. Tech., Vol.184, pp.224-232. https://doi.org/10.1016/j.jmatprotec.2006.11.027
  9. Nilsson, A., 2001, "Front-end Bending in Plate Rolling," Scan. J. Metal., Vol.30, pp.337-344. https://doi.org/10.1034/j.1600-0692.2001.300510.x
  10. Park, B. H. and Hwang, S. M., 1997, "Analysis of Front End Bending in Plate Rolling by the Finite Element Method," J. Manuf. Sci. Eng., Vol.119, pp.314-232. https://doi.org/10.1115/1.2831109
  11. Dyja, H., Korczak, P., Pilarczyk, J. W. and Grzybowski, J., 1994, "Theoretical and Experimental Analysis of Plates Asymmetric Rolling," J. Mat. Proc. Tech., Vol.45, pp.167-172. https://doi.org/10.1016/0924-0136(94)90336-0
  12. Salimi, M. and Sassani, F., 2002, "Modified Slab Analysis of Asymmetrical Plate Rolling," Int. J. Mech. Sci., Vol. 44, pp.1999-2023. https://doi.org/10.1016/S0020-7403(02)00043-7
  13. Li, X., Du, F., Wang, M. and Wu, J., 2005, "FEM Analysis of Geometry Control of the Plate Head in the Vertical-horizontal Rolling Processes," China Mech. Eng., Vol.16, pp.712-715.
  14. Yoshiharu, D., Michihiko, H., Hidehito, F., Daisuke, M., Hirokazu, T. and Toshiro, N., 2000, "Development of Camber Meter in Plate Rolling," Papers of Tech. Meeting on Metal Indus. Div., pp.29-32.
  15. Shida, S., 1969, "Empirical Formulation of Flowstress of Carbon Steels Resistance to Deformation of Carbon Steels at Elevated Temperature. 2nd Report," Journal of the Japan Society for Technology of Plasticity, Vol.10, pp.610-617.
  16. Buckingham, E., 1914, "On Physically Similar Systems: Illustrations of the Use of Dimensional Equations," Phys. Rev., Vol. 4, No. 4, pp.345-376. https://doi.org/10.1103/PhysRev.4.345
  17. Ginzburg, V.B., 1989, Steel-Rolling Technology - Theory and Practice, Marcel Dekker Inc., New York and Basel.