DOI QR코드

DOI QR Code

Seaweed Biomass Resources in Korea

한국의 해조류 바이오매스자원 현황

  • Lee, Shin-Youb (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Ahn, Jae-Woo (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Hwang, Hyeong-Jin (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Lee, Sun-Bok (Department of Chemical Engineering, Pohang University of Science and Technology)
  • 이신엽 (포항공과대학교 화학공학과) ;
  • 안재우 (포항공과대학교 화학공학과) ;
  • 황형진 (포항공과대학교 화학공학과) ;
  • 이선복 (포항공과대학교 화학공학과)
  • Received : 2011.06.23
  • Accepted : 2011.07.19
  • Published : 2011.08.30

Abstract

There is a growing worldwide interest in the potential of marine biomass as an environmentally friendly and economically sustainable resource. Due to the great lack of comprehensive information about domestic seaweed resources, this study aimed to analyze the existing literature on the production and types of domestic seaweed species. Based on this data the possibilities of industrial use of domestic seaweed for the production of biofuels and bioplastics had been assessed. Our review took into account the seaweed species on domestic coasts as well as the species currently in great production via seaweed farming. Due to their wide distribution, their status as farmed crops, and the likelihood of securing their reliable supply, Codium fragile, Hizikia fuciformis, and Gelidium amansii were deemed to be the most appropriate candidates for domestic industrial use. The industrial potential of seaweed biomass was also explored by comparing the predicted amount of biomass necessary to replace current gasoline and plastics use with currently available farming space. The results of our study imply that once a steady and adequate supply of the proper kinds of seaweed can be secured through seaweed farming, there is a great potential for the development of new seaweed-based biofuels and bioplastics industries in Korea.

Keywords

References

  1. Lee, S. B., S. J. Cho, S. Y. Lee, K. H. Peak, J. A. Kim, and J. H. Chang (2009) The marine bio/chemical industry: present and prospect. KSBB J. 24: 495-507.
  2. OECD (2008) Biofuel Support Policies: An Economic Assessment. pp. 30-33. Paris, France.
  3. United States Government Energy (2007) Independence and Security Act of 2007. pp. 110-140. USA.
  4. Goh, C. S. and K. T. Lee (2010) A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renew. Sust. Energ. Rev. 14: 842-848. https://doi.org/10.1016/j.rser.2009.10.001
  5. Roesijadi, G., S. B. Jones, L. J. Snowden-Swan, and Y. Zhu (2010) Macroalgae as a Biomass Feedstock: A Preliminary Analysis, PNNL 19944. Pacific Northwest National Laboratory, Washington, USA.
  6. Korea Maritime Institute (2010) Strategies to Industrialize the Algae Bio-business and Policy Direction, Korea.
  7. Lee, J. S. (2008) Chemistry and Utilization of Algae. pp. 16-45. Hyoil, Seoul, Korea.
  8. Chang, J. H. (2011) Studies on the Acid Hydrolysis of Ulva pertusa. Master's Thesis.Pohang University of Science and Technology, Pohang, Gyungbuk, Korea.
  9. Food and Agriculture Organization of the United Nations (2006) Yearbook of Fishery Statistics Summary Tables. ftp://ftp.fao.org/ fi/stat/summary/summ_06/a-5.pdf.
  10. Korean Fishery Information Service. http://www.fips.go.kr.(2010).
  11. Korean Fisheries Agency (1988) Survey Report of Coastal Fisheries. pp. 19-22. Korea
  12. Ministry for Food, Agriculture, Forestry and Fisheries http://www.mifaff.go.kr/list.jsp?id=27374&pageNo=1&NOW_YEAR=2010&group_id=2&menu_id=52&link_menu_id=&division=B&board_kind=C&board_skin_id=C1&parent_code=34&link_url=&depth=2&code=left&link_target_yn=N&menu_name.(2011).
  13. Kim, Y. H., J. K. Ahn, J. I. Lee, and H. M. Eum (2004) Effects of heated effluents on the intertidal macroalgal community near Uljin, the east coast of Korea. Korean J. Phycol. 19: 257-270.
  14. Kim, M. S., M. R. Kim, M. H. Chung, J. H. Kim, and I. K. Chung (2008) Species composition and biomass of intertidal seaweeds in Chuja island. Korean J. Phycol. 23: 301-310.
  15. Baek, J. M., M. S. Hwang, J. W. Lee, W. J. Lee, and J. I. Kim (2007) The macroalgal community of Bagryoungdo island in Korea. Korean J. Phycol. 22: 117-123
  16. Choi, C. G., S. N. Kwak, and C. H. Sohn (2006) Community structure of subtitdal marine algae at Uljin on the east coast of Korea. Korean J. Phycol. 21: 463-470.
  17. Kang, P. J., Y. S. Kim, and K. W. Nam (2008) Flora and community structure of benthic marine algae in Ilkwang bay, Korea. Korean J. Phycol. 23: 317-326.
  18. Hwang, E. K., C. S. Park, C. H. Sohn, and N. P. Koh (1996) Analysis of functional form groups in macroalgal community of Yonggwang vicinity, western coast of Korea. J. Korean Fish. Soc. 29: 97-106.
  19. Lee, W. J., M. S. Hwang, J. M. Baek, J. W. Lee, and J. I. Kim (2007) Primary survey on algal community of Gyounggi bay for restoration. Korean J. Phycol. 22: 201-207.
  20. Cho, T. O. and S. M. Boo (1996) Seasonal changes of marine plants in Oeyondo island on the Yellow Sea. Korean J. Phycol. 11: 285-293.
  21. Lee, K. H., H. I. Yoo, and H. G. Choi (2007) Seasonal community structure and vertical distribution of medicinal seaweeds at Kkotji in Taean Peninsula, Korea. Korean J. Phycol. 22: 209-219.
  22. Lee, J. W., B. G. Oh, and H. B. Lee (2000) Marine benthic algal community at Padori, west coast of Korea. Korean J. Phycol. 15: 111-117.
  23. Lee, S. Y., J. W. Lee, and H. B. Lee (1997) Marine benthic algal flora of Yongil bay and its adjacentareas, the eastern coast of Korea. Korean J. Phycol. 112: 303-311.
  24. Park, S. H., Y. P. Lee, Y. H. Kim, and I. K. Lee (1994) Qualitative and quantative analyses of intertidal benthic algal community in Cheju island 1. species composition and distributional patterns. Korean J. Phycol. 9: 193-203.
  25. Lee, I. K., D. S. Choi, Y. S. Oh, G. H. Kim, J. W. Lee, K. Y. Kim, and J. S. Yoo (1990) Marine algal flora and community structure of Chongsando island on the South Sea of Korea. Korean J. Phycol. 6: 131-143.
  26. KOSIS. http://kosis.kr/gen_etl/start.jsp?orgId=101&tblId=DT_1ET0024&conn_path=I2&path.(2010).
  27. Kim, S. and B. E. Dale (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg. 26: 361-375 https://doi.org/10.1016/j.biombioe.2003.08.002
  28. Kim, K. S., J. H. Kim, M. K. Shin, K. M. Cho, S. Y. Kim, J. K. Sim, S. B. Kim, Y. J. Kim, M. H. Lee, S. B. Lee, and H. J. Ryu (2007) Feasibility Study on the Utilization of Algae for the Bio-Energy Production, 2007-N-BI17-P-01. Ministry of Commerce, Industry and Energy, Korea.
  29. Wallace, R., K. Ibsen, A. McAloon, and W. Yee (2005) Feasibility Study for Co-Locating and Integrating Ethanol Production Plants from Corn Starch and Lignocellulosic Feedstocks, NREL/TP-510-37092. National Renewable Energy Laboratory, Washington, USA.
  30. Humbird, D., R. Davis, L. Tao, C. Kinchin, D. Hsu, A. Aden, P. Schoen, J. Lukas, B. Olthof, M. Worley, D. Sexton, and D. Dudgeon (2011) Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover, NREL/TP-5100-47764. National Renewable Energy Laboratory, Washington, USA.
  31. Index mundi, Republic Of Motor Gasoline Consumption by Year. http://www.indexmundi.com/energy.aspx?country=kr& product=gasoline&graph=consumption.(2007).
  32. Hwang, H. J., S. Y. Lee, S. M. Kim, and S. B. Lee (2011) Fermentation of seaweed sugars by Lactobacillus species and its potential as a biomass feedstock. Biotechnool. Bioprocess Eng. accepted.
  33. KOSIS. http://kosis.kr/gen_etl/start.jsp?orgId=101&tblId=DT_ 1F05012&conn_path=I2&path.(2010).
  34. Nagarjun, P. A., R. S. Rao, S. Rajesham, and L. V. Rao (2005) Optimization of lactic acid production in SSF by Lactobacillus amylovorus NRRL B-4542 Using Taguchi Methodology. J. Microbiol. 43: 38-43.
  35. McAloon, A., F. Taylor, W. Yee, K. Ibsen, and R. Wooley (2000) Determining the Cost of Producing Ethanol from Corn Starch and Lignocellulosic Feedstocks, NREL/TP-580-28893. National Renewable Energy Laboratory, Washington, USA.
  36. Cui, F., Y. Li, and C. Wan (2011) Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis. Bioresour. Technol. 102: 1831-1836. https://doi.org/10.1016/j.biortech.2010.09.063
  37. Kraan, S. (2010) Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig. Adapt. Strateg. Glob. Change, in press, DOI 10.1007/s11027- 010-9275-5.
  38. KOSIS. http://kosis.kr/gen_etl/start.jsp?orgId=114&tblId=TX_ 12321_A000&conn_path=I2&path.(2011).
  39. Titlyanov Kraan, S. and T. V. Titlyanova (2010) Seaweed cultivation: methods and problems. Russ. J. Mar. Biol. 36: 227-242. https://doi.org/10.1134/S1063074010040012
  40. Seaweed bioethanol production in Japan - The Ocean Sunrise Project. Proceedings of Oceans 2007, pp. 1-5. DOI 10.1109/ OCEANS.2007.4449162.

Cited by

  1. Optimization for Enzymatic Hydrolysis of Mannitol vol.28, pp.2, 2013, https://doi.org/10.7841/ksbbj.2013.28.2.65
  2. Research and development for algae-based technologies in Korea: a review of algae biofuel production vol.123, pp.3, 2015, https://doi.org/10.1007/s11120-014-9974-y
  3. Hydraulic Model Experimental Study on the Rope Kink Phenomena and Mooring Block Behavior under Wave Conditions at a Seaweed Farm vol.20, pp.1, 2014, https://doi.org/10.7837/kosomes.2014.20.1.011
  4. Chemical composition, saccharification yield, and the potential of the green seaweed Ulva pertusa vol.19, pp.6, 2014, https://doi.org/10.1007/s12257-014-0654-8
  5. Physico-chemical characterization and enzymatic functionalization of Enteromorpha sp. cellulose vol.135, 2016, https://doi.org/10.1016/j.carbpol.2015.08.048
  6. Production of sugars from macro-algae Gracilaria verrucosa using combined process of citric acid-catalyzed pretreatment and enzymatic hydrolysis vol.13, 2016, https://doi.org/10.1016/j.algal.2015.12.011
  7. The Use of Cellulose Nanofillers in Obtaining Polymer Nanocomposites: Properties, Processing, and Applications vol.07, pp.05, 2016, https://doi.org/10.4236/msa.2016.75026
  8. Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis vol.161, 2014, https://doi.org/10.1016/j.biortech.2014.03.078
  9. Global shortage of technical agars: back to basics (resource management) vol.30, pp.4, 2018, https://doi.org/10.1007/s10811-018-1425-2
  10. 복합해조류 발효추출물의 항산화, 미백 활성 vol.44, pp.3, 2018, https://doi.org/10.15230/scsk.2018.44.3.327