DOI QR코드

DOI QR Code

Image Interpolation Using Iterative Error Elimination

반복적 오차 제거를 이용한 영상 보간법

  • Received : 2010.12.20
  • Accepted : 2011.07.15
  • Published : 2011.08.31

Abstract

Image interpolation is a technique which estimates the non-allocated pixel values on image scale-transform. It requires minimum computational complexity and minimum image quality degradation on the interpolated resultant images. In this paper we propose an image interpolation method using iterative error estimation. The proposed method consists of the following five steps: loss-information computational step, loss-information estimation step, loss-information application step, error computation step, and error application step. The experimental results obtained show that the average PSNR is increased by 3.3dB, subjective image quality is enhanced and the minimum computation complexity is decreased by 83%. The proposed image interpolation algorithm may be helpful in various applications such as image reconstruction and enlargement.

영상 보간법은 영상의 크기변환에서 할당되지 못한 화소에 대한 값을 추정하는 기술로써, 보간된 결과 영상에서 나타나는 화질 열화 현상을 최소화하면서도 낮은 계산복잡도를 가지는 것이 필요하다. 본 논문에서는 반복적 오차 제거를 이용한 영상 보간법을 제안한다. 제안하는 방법은 5단계로 구성되며, 각각 손실 정보 계산 단계, 손실 정보 추정 단계 손실 정보 적용 단계 오차 계산 단계 오차 적용 단계이다. 실험을 통해서 기존의 방법보다 평균 3.3dB이상 PSNR(peak signal to noise rate)이 향상된 것을 알 수 있었고, 주관적인 화질도 개선된 것을 확인하였으며 계산복잡도가 최소 83% 이상 감소한 것을 측정하였다. 제안한 영상 보간 방법은 영상 복원 및 확대를 위한 다양한 응용 환경에서 유용하게 사용될 수 있다.

Keywords

References

  1. S. H. Hong, R. H. Park, S. J. Yang, and J. Y. Kim, "Image Interpolation Using Interpolative Classified Vector Quantization," Image Vis. Comput., Vol.26, No.2, pp.228-239, 2008. https://doi.org/10.1016/j.imavis.2007.05.002
  2. W. Qing and R. K. Ward, "A New Orientation-Adaptive Interpolation Method," IEEE Transactions on Image Processing, Vol.16, Issue 4, pp.889-900, 2007. https://doi.org/10.1109/TIP.2007.891794
  3. S. Banerjee, "Low-Power Content-Based Video Acquisition for Super-Resolution Enhancement," IEEE Transactions on Multimedia, Vol.11, Issue 3, pp.455-464, 2009. https://doi.org/10.1109/TMM.2009.2012925
  4. A. Giachetti and N. Asuni, "Fast Artifacts- free Image Interpolation," In Proc. of the British Machine Vision Conf., pp.123-132, 2008
  5. K. S. Ni and T. Q. Nguyen, "An Adaptable k-Nearest Neighbors Algorithm for MMSE Image Interpolation," IEEE Trans. Image Process., Vol.18, Issue 9, pp.1976-1987, 2009. https://doi.org/10.1109/TIP.2009.2023706
  6. Y. Bai and H. Zhuang, "On the Comparison of Bilinear, Cubic Spline, and Fuzzy Interpolation Techniques for Robotic Position Measurements," IEEE Transactions on Instrumentation and Measurement, Vol.54, Issue 6, pp.2281-2288, 2005. https://doi.org/10.1109/TIM.2005.858563
  7. W. Yu, "Colour Demosaicking Method Using Adaptive Cubic Convolution Interpolation with Sequential Averaging," IEE Proc.-Vis. Image Signal Process., Vol.153, No.5, 2006.
  8. H. Yoo, "Closed-form Least-squares Technique for Adaptive Linear Image Interpolation," Electronics Letters, Vol.43, Issue 4, pp.210-212, 2007. https://doi.org/10.1049/el:20073606
  9. X. Li, "New Edge-Directed Interpolation," IEEE Transactions on Image Processing, Vol.10, No.10, pp.1521-1527, 2001. https://doi.org/10.1109/83.951537
  10. N. Asuni, "INEDI -- Tecnica Adattativa Per I'interpolazione di Immagini." Master's thesis, Università degli Studi di Cagliari, 2007.
  11. A. Temizel and T. Vlachos, "Wavelet Domain Image Resolution Enhancement," IEE Proceedings Vision, Image and Signal Processing, Vol.153, Issue 1, pp.25-30, 2006. https://doi.org/10.1049/ip-vis:20045056
  12. O. Salvado, C. Hillenbrand, and D. Wilson. "Partial Volume Reduction by Interpolation with Reverse Diffusion," International Journal of Biomedical Imaging, Vol.2006, pp.1-13, 2006.
  13. C. T. Lin, K. W. Fan, H. C. Pu, S. M. Lu, and S. F. Liang, "An HVS-Directed Neural- Network-Based Image Resolution Enhancement Scheme for Image Resizing," IEEE Transactions on Fuzzy Systems, Vol.15, Issue 4, pp.605-615, 2007. https://doi.org/10.1109/TFUZZ.2006.889875
  14. L. Min and T. Q. Nguyen, "Markov Random Field Model-Based Edge-Directed Image Interpolation," IEEE Transactions on Image Processing, Vol.17, Issue 7, pp.1121-1128, 2008. https://doi.org/10.1109/TIP.2008.924289
  15. H. Takeda, S. Farsiu, and P. Milanfar, "Kernel Regression for Image Processing and Reconstruction," IEEE Transactions on Image Processing, Vol.16, No.2, pp.349-366, 2007. https://doi.org/10.1109/TIP.2006.888330
  16. S. C. Park, M. K. Park, and M. G. Kang, "Super-Resolution Image Reconstruction: A Technical Overview," IEEE Signal Processing Magazine, Vol.20, No.3, pp.21-36, 2003. https://doi.org/10.1109/MSP.2003.1203207
  17. K. I. Kim and Y. H. Kwon, "Example-based Learning for Single-Image Super-resolution," Lecture Notes in Computer Science, Vol. 5096, pp.456-465, 2008.
  18. A. Mahalanobis and R. Muise, "Object Specific Image Reconstruction using a Compressive Sensing Architecture for Application in Surveillance Systems," IEEE Transactions on Aerospace and Electronic Systems, Vol. 45, Issue 3, pp.1167-1180, 2009. https://doi.org/10.1109/TAES.2009.5259191
  19. 고결, 홍민철, "공간불변 점확산 함수를 이용한 영상복원방식," 대한전자공학회 추계학술대회논문집, 제33권, 제2호, pp.333-334, 2010.
  20. 박규로, 김인중, "영상 관찰 모델을 이용한 예제기반 초해상도 텍스트 영상 복원," 한국정보처리학회논문지B, 제17권, 제4호, pp.295-302, 2010.
  21. 김태양, 전영균, 정제창, "새로운 거리 가중치와 지역적 패턴을 고려한 적응적 선형보간법," 한국통신학회논문지, 제31권, 제12C호, pp.1184- 1193, 2006.
  22. 유훈, "적응적인 선형 보간을 이용한 부화소 기반 영상 확대," 한국멀티미디어학회논문지, 제9권, 제8호, pp.1000-1009, 2006.
  23. 이우섭, 김형교,, "방향성 에지 윤곽선 가중치를 이용한 영상 보간," 한국신호처리시스템학회논문지, 제11권, 제1호, pp.26-31, 2010.
  24. W. Yu, "Colour Demosaicking Method Using Adaptive Cubic Convolution Interpolation with Sequential Averaging," IEE Proc.-Vis. Image Signal Process., Vol.153, No.5, 2006.
  25. http://www.mathworks.com/matlabcentral/fileexchange/21410-increase-image- resolution.