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Abstract

Circular variables are those that have a period in its range. Their examples include
direction of animal migration, and time of drug administration, just to mention a few.
Statistical analysis of circular variables is quite different from that of linear variables
due to its periodic nature. In this paper, the author proposes new circular regression
models using geodesic lines on the surface of the sample space of the response and the
predictor variables.
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1. Introduction

Circular regression in this paper refers to a regression that includes a circular variable. In
the following, we denote a circular regression as dependent-independent form. For example,
a circular regression that has a circular variable and a linear variable as dependent and
independent variables, respectively, is denoted as circular-linear regression. In the following,
some background of circular regression is presented.

The Gould (1969) paper is considered to be the earliest appearance of a circular regression,
where he proposes a circular-linear regression model. It is discussed that his model produces
non-unique maximum likelihood (ML) estimates due to having the linear mean link. In
Johnson and Wehrly (1978) and Fisher and Lee (1992), readers can find their methods on
improving the Gould’s model. A circular-(circular, linear) regression is discussed in Lund
(1999). In his paper, it is shown that the least circular distance estimators are the same as
the ML estimators when the circular dependent variable is assumed to follow a von Mises
distribution. In this paper, however, it is shown that predicting a circular variable from
a linear predictor is not feasible when their bivariate sample space is solely considered. A
linear-(linear, circular) regression is proposed in SenGupta and Ugwuowo (2006), where a
trigonometric polynomial is used for a circular predictor. A new linear-circular model is
proposed in this paper, after examining their bivariate sample space, which is a cylinder.

Circular-circular regression is discussed in Jammalamadaka and Sarma (1993) and Downs
and Mardia (2002). In Jammalamadaka and Sarma (1993), their circular model is translated
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into a linear model by using sine and cosine trigonometric polynomials of an independent
circular variable for each of sine and cosine terms of a dependent circular variable. In Rivest
(1997), Downs and Mardia (2002), Kato et al. (2008) and SenGupta and Kim (2011), the
Moébius transformation that maps the unit disc to itself are used. In this paper, a new model
is proposed after examining their bivariate sample space, which is a torus.

The motivation for the works in this paper is to propose circular regression models in a
new perspective, i.e. in a topological point of view. When a sample space is a plane for two
linear variables, it is often preferred to fitting a straight line to describe their relationship,
which has the least complex form among all other possible models. A straight line on a
plane is also a geodesic line. In this paper, new models are established by fitting the best
geodesic line for data points in each sample space of response and predictor variables. In
this paper, we are not interested in comparing the new models with other existing models
since our purpose is solely to introduce the new perspective of modeling when sample spaces
are considered.

2. Methodology

2.1. Method for a linear and a circular variables

When two linear variables are studied, their sample space is a plane and bivariate obser-
vations are presented as scattered points on a plane. A straight line is often fitted on a plane
based on those bivariate observations due to its simplest form. When bivariate observations
are a linear and a circular measurements, their sample space is the surface of a cylinder.
Therefore, we can visualize n bivariate observations as n scattered points on the surface of a
cylinder. The analogous to a straight line on a plane is a geodesic line on a surface (O’Neill,
1997). Since a cylinder and a plane are locally isometric, i.e. there is a distance-preserving
isometry mapping between them, the geodesic line on the surface of a cylinder is the same
as that of a plane, i.e. a straight line. In this point of view, we consider the least square
line on a plane for n bivariate measurements on a circular and a linear variables.

The following plots show 16 observations on air quality index (linear) and wind direction
(circular).
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Figure 2.1 Scatter plots of wind direction and air index
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The left and the right in Figure 2.1 have the circular variable and the linear variable in
the y-axis, as the dependent variable, respectively. It is shown that a regression between
a linear and a circular variables is only possible when a linear variable is the dependent
variable, i.e. in y-axis, and a circular variable is the independent variable, i.e. in x-axis, but
not in the other direction. When a circular variable is the dependent variable, as evidently
shown in the left plot in Figure 2.1, there can be two values for the circular variable for each
given value of a linear variable. This means that the model is not suitable for the purpose
of predicting one corresponding value for a given value of a linear variable. Therefore, we
do not discuss a circular-linear regression in this paper.

Having a circular dependent variable, as shown in the right of Figure 2.1, it is necessary
to have more than one straight line for prediction of the air index, measured in parts per
million, given a wind direction, measured in radians, due to the periodic nature of a circular
variable. In Figure 2.1, one least square line can be fitted between —m radians and -0.8
radians, and the other least square line can be fitted between -0.8 radians and 1.6 radians.
This can be done by using a spline regression model (Marsh, 2002), which is given by

AirIndex; = ag + by WindDirection; + by D;(WindDirection; + 0.8) +¢;, i=1,...,16,

where ag, by and by are parameters, D; is a dummy variable that takes 1 for wind direction
more than -0.8, and 0 otherwise, and ¢;’s are iid random variables with zero mean. The
fitted equation is given by

Amxi = —0.89 + 0.003WindDirection; — 0.42D;(WindDirection; + 0.8).

The left plot in Figure 2.2 shows the fitted line over the scatter plot shown in the right
of Figure 2.1. Another linear-circular example is presented using the data set of a marine
biology study, which is also used in Lund (1999). It is chosen that the dependent variable
and independent variable are the amplitude of low tide, measured in inches, and the time
of low tide, measured in hours, respectively. The fitted line over the scatter plot is shown
in the right plot of Figure 2.2. A model for the data set is given by

Amplitude; = ag + by TimeLow; + bo D1;(TimeLow; — 9) + b3 D2;(TimeLow; — 11) + ¢;

for ¢ = 1,...,86, where ag, by, by and b3 are parameters, D1; takes 1 for the time of low
tide more than 9 and 0 otherwise, D2; takes 1 for the time of low tide more than 11 and
0 otherwise, and ¢;’s are iid random variables with zero mean. The fitted line equation is
given by

AHl/[ﬂEldei = —25.2140.73%LowTide; — 7.6« D1;%(LowTide; —9)+9.92% D2;x(LowTide; —11).

It is well known that the least square estimators, a, 131, by and 33 are asymptotically
normally distributed. Readers can find about the goodness of fit of using a spline regression
in Eubank (1988). It is found that the optimal integrated risk in the spline regression
model is O (n_4/ 5). This method of linear-circular regression, however, requires to choose
the turning points properly as done in the above examples. This may be done by, first
choosing an appropriate interval that a turning point belongs to, then trying many values
in the interval in order to obtain the best least square fit among those models, which can
be performed using a computer program. Alternatively, one can try to estimate the turning
points as parameters in each model.
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Figure 2.2 Fitted lines of wind direction and air index (left) and low tide and amplitude (right)

2.2. Method for two circular variables

Suppose (01, ¢1),... ,(0n,@r) are n bivariate observations on two circular variables both
ranging from -7 to w. Their sample space is constructed as the surface on a torus. A
parametrization of the surface, which is known as a Clairaut parametrization, is given by

x = (M +mecos(¢))cos(0),y = (M + mcos(¢)) sin(d), z = asin(¢),

where M and m are major and minor axis of a torus, respectively. Then, the geodesic
equation for a torus (Irons, 2005) is given by

0:00+h/¢ dv te, (2.1)
¢ (M +mcos(v))/[(M +mcos(v))? — h?]

where h is the geodesic slant, which is an angle between the geodesic line and the 8 coordinate
of the tangent vector, ¢g is a starting point of ¢, 6y is the conditional mean direction of
given that ¢ = ¢, and € follows a circular distribution with zero mean direction. In terms
of the absolute value of the h, we need to require that the absolute value of h is greater
than 0 and less than M —m. Only in such a case, geodesic lines can pass through all points
on the surface of torus, that is, they can alternatively cross both inner and outer equators
on the surface, which is called 'unbounded geodesics. The integral in (2.1) does not have
a closed form solution, but can be numerically fitted using the constrOptim function in R
with three parameters 6y, ¢g, and h.

The distance from an angle A to an angle B can be measured in two different ways
depending on the direction of measurement around the circle. For example, the distance
from 30° to 330° is measured as 300° or 60° when going counterclockwise or clockwise,
respectively. Hence, a more proper distance measure between two angles, A and B, is given
in the following definition (Jammalamadaka and SenGupta, 2001).

Definition 2.1 Circular distance (cd) between two points A and B on a circumference is
defined to be
cd(A,B) =1 —cos(a — 8),
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where a and 3 represent the angles measured from a specified origin corresponding to the
points, A and B, respectively. If « — = 0 and | — 8| = =, then ¢d(A4,B) = 0 and
cd(A, B) = 2, respectively.

When the dependent variable is a circular variable, instead of considering the sum of squared
distances, we minimize the sum of the circular distances, yielding the least circular distance
estimators of 0y, ¢o, and h.

Fitting the equation is performed by the least circular distance method, where M and m
are arbitrary chosen as 3 and 1, respectively. Hence, we have boundary conditions for fy
and ¢o from —7 to m and for h from 0 to 2. After enforcing a restriction that 0g=—_, = é¢=ﬂ,
the objective function to be minimized is given by

“eos (0 — 0+ h [ dv
Q_;COS<Z_ or /0 (Mercos(z/))\/[(MJrmcos(u))2h2]>

i dv
~A , 2.2
(/_7r (M +mcos(v))\/[(M +mcos(v))? — h2]> 22)

where A denotes the Lagrange multiplier. The first order equations are shown below

0Q ~~. [, _ o dv B
T%_Zsm (91 00+h/0 (M+mcos(y))\/[(M+mcos(1/))2—h2]> =0

i=1

0Q = Y sin | 6; — " dv
o ; (91 bt h/o (M + mcos(v)) /M + mcos())2 — h2]>
dv

i
X0 /0 (M +mcos(v))y/[(M + mcos(v))? — $2]

8—62 = . sin | 6; — i dv
oh Z_: (91 bot-h éo (M +mecos(v))\/[(M +mcos(v))? — h2]> .

¢ dv
1—h? =0
[ ] {/0 (M +mcos(v))y/[(M + mcos(v))2 — h?] }

3£ _ Q dv
1)) —x (M +mcos(v))\/[(M + mcos(v))? — h?]

9

where we used the Leibnitz’s Rule (Casella and Berger, 2002). Using the bivariate wind
direction data (Johnson and Wehrly, 1978), the fitted equation is shown below,

R ¢ dv
o=-or-ozs [ (31 cos(1)v/[(3 + cos())? — 0.08]

A linear estimator from the least circular distance estimation (LCDE) is asymptotically
normally distributed (Kim, 2009). The asymptotic variance-covariance matrix is given by
the inverse of the Hessian matrix of (2.2). For example,

h ~ N(h,H[3,3]7"),



966 Sungsu Kim

where H([3,3] is the third diagonal element in the Hessian matrix of (2.2).

3. Summary

Circular regression methods using geodesic lines on the sample spaces are discussed in
this paper. For linear-circular bivariate data, their sample space is described as the surface
of a cylinder. For circular-circular bivariate data, it is described as the surface of a torus.
Geodesic lines on a surface are fitted as the simplest form of model, as analogous to a straight
line on a plane. Using the isometry between the surface of a cylinder and a plane, a linear
spline regression model is fitted for a linear-circular case. For a circular-circular case, the
geodesic line can be fitted numerically using the LCDE method. It is also shown that a
circular-linear regression is not feasible when the sample space is taken into consideration.
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