DOI QR코드

DOI QR Code

Evaluation of Surface Water-preventing Materials on Stabilization of Contaminants in Tailings

광물찌꺼기에 함유된 오염물질의 안정화를 위한 표면 차폐재의 성능 평가

  • Kim, Young-Kyu (Department of Energy and Mineral Resources Engineering, Sejong University) ;
  • Jung, Myung-Chae (Department of Energy and Mineral Resources Engineering, Sejong University) ;
  • Kim, Jung-Yul (Soam Consultant) ;
  • Kim, Yoo-Sung (Soam Consultant) ;
  • Lee, Jin-Soo (Institute of Mine Reclamation Technology, Mine Reclamation Corporation) ;
  • Park, Kwan-In (Institute of Mine Reclamation Technology, Mine Reclamation Corporation)
  • 김영규 (세종대학교 공과대학 에너지자원공학과) ;
  • 정명채 (세종대학교 공과대학 에너지자원공학과) ;
  • 김중열 ((주)소암컨설턴트) ;
  • 김유성 ((주)소암컨설턴트) ;
  • 이진수 (한국광해관리공단 광해기술연구소) ;
  • 박관인 (한국광해관리공단 광해기술연구소)
  • Received : 2011.07.29
  • Accepted : 2011.08.15
  • Published : 2011.08.31

Abstract

This study examined evaluation on stabilization of major and trace elements in tailings by various surface water-preventing materials. Six columns were filled with tailings of the Sinlim mine, then covered with tailings only, compacted soils, clay, soil-bentonite mixture, pozzolan and bentonite mat. After injection of artificial rain water, the leachate was sampled with times (3, 6, 9 and 12 pore volume) and analysed for major (Ca, Na, Mg, K) and trace elements (As, Cd, Cu, Pb, Zn) by ICP-AES. With exception to pozzolan type, the pH values of leachate from the other types became stabilized from 5.5 to 7.5, and EC (electric conductivity) of leachate from them decreased with times. For the pozzolan type, however, the pH and EC of leachate increased with time due to its alkalinity producing system. Concentrations of most major and trace elements in leachate decreased and stabilized with time. Consequently, soil-bentonite mixed cover shows the best ability of water-preventing and reducing mobility of elements in tailings site.

Keywords

References

  1. 김세현, 최상훈, 최영천, 1996, 신림광산의 천열수성 은-금 광화 작용, 한국자원공학회지, 33(4), 274-281.
  2. 대한광업진흥공사, 1987, 한국의 광상 (금, 은편), 제10호, 서울, p. 1013.
  3. 이동길, 송원경, 정영욱, 정명채, 임길재, 윤석호, 권현호, 2008, 광미적치장의 최적 처리방안 선정을 위한 경제성 분석 연구, 한국지구시스템공학회지, 45(6), 663-672.
  4. 이민희, 이예선, 송나인, 2005, 소석회와 탄산칼슘을 이용한 매립장 주변 중금속오염 지하수 정화, 자원환경지질, 38(3), 273-283.
  5. 이진수, 박제현, 박주현, 2008, 광물찌꺼기 고형화 처리를 위한 포졸란공법의 현장적용성 평가, 광해방지기술, 2(1), 91-101.
  6. 장암, 최용수, 김경웅, 김인수, 1999, 폐금속광산의 광미에 존재하는 중금속 특성, 한국환경공학회지 21(1), 41-51.
  7. 전용원 전효택, 정명채 등, 1997, 지구자원과 환경, 서울대학교출판부, 서울, p. 492.
  8. 전효택, 김종대, 김옥배, 민경원, 박영석, 윤정한, 1997, 응용지구화학, 서울대학교출판부, 서울, p. 380.
  9. 정명채, 2002, 광산개발에 의한 환경오염 현황, 2002 광해방지 정책 및 기술심포지움, 한국지질자원연구원, p. 37-53.
  10. 정명채, 정문영, 최연왕, 2004, 국내 휴/폐광 금속광산 주변의 중금속 환경오염 평가, 자원환경지질, 37(1), 21-33.
  11. 정명채, 정문영, 2006, 국내 휴폐금속광산의 환경오염 평가 및 향후 관리 방안, 한국지구시스템공학회지, 43(5), 383-394.
  12. 지한구, 2005, Column test를 통한 중금속 저감효율 및 고형화/안정화 적용가능성 방안 연구, 세명대학교 대학원 석사학위 논문, p. 21-23.
  13. 현재혁, 김민길, 2007, 폐기물 매립지 차수재 및 복토재의 신기술 동향, 대한환경공학회지, 29(1), 3-7.
  14. Alloway, B.J., 1995, Heavy Metals in Soils, 2nd ed, Blackie Academic&Professional, London, p. 368.
  15. Bose, P. and Sharma, A., 2002, Role of iron in controlling speciation and mobilization of arsenic in subsurface environment, Water Research, 36, 4916-4926. https://doi.org/10.1016/S0043-1354(02)00203-8
  16. Bothe Jr., J.V. and Brown, P.W., 1999, Arsenic immobilization by calcium arsenate formation, Environmental Science and Technology, 33, 3806-3811. https://doi.org/10.1021/es980998m
  17. Bowen, H.J.M., 1979, Environmental Chemistry of the Elements, Academic Press, New York, p. 333.
  18. Choi, W.-H., Lee, S.-R., and Park, J.-Y., 2009, Cement based solidification/stabilization of arsenic-contaminated mine tailings, Waste Management, 29, 1766-1771. https://doi.org/10.1016/j.wasman.2008.11.008
  19. Dutre, V. and Vandecasteele, C., 1998, Immobilization mechanism of arsenic in waste solidified using cement and lime, Environmental Science and Technology, 32, 2782-2787. https://doi.org/10.1021/es971090j
  20. Jakubick, A., McKenna, G., and Robertson, A.M., 2003, Stabilisation of tailings deposits. Ontario, Canada: International Experience. Mining and the Environment III, Sudbury. 25-28 May, p. 1-9.
  21. Jang, A. and Kim, In. S., 2000, Solidification and stabilization of Pb, Zn, Cd and Cu in tailing wastes using cement and fly ash, Minerals Engineering, 13, 1659-1662. https://doi.org/10.1016/S0892-6875(00)00151-5
  22. Jung, M.C. and Thornton, I., 1996, Heavy metal contamination of soil and plants in the vicinity of lead-zinc mine, Korea, Applied Geochemistry, 11, 53-59. https://doi.org/10.1016/0883-2927(95)00075-5
  23. Kim, J.-W. and Jung, M.C., 2011, Solidification of arsenic and heavy metal containing tailings using cement and blast furnace slag, Environ, Geochem. Health, 33, 151-158. https://doi.org/10.1007/s10653-010-9354-2
  24. Kim, S.O., Kim, W.S., and Kim, K.W., 2005, Evaluation of electrokinetic remediation of arsenic-contaminated soils. Environ. Geochem. Health, 27, 443-453. https://doi.org/10.1007/s10653-005-2673-z
  25. Singh, T.S. and Pant, K.K., 2006, Solidification/stabilization of arsenic containing solid wastes using Portland cement, fly ash and polymeric materials, Journal of Hazardous Materials, 131, 29-36. https://doi.org/10.1016/j.jhazmat.2005.06.046