DOI QR코드

DOI QR Code

Strain Amplitude Dependence of Damping Capacity in Mg-AI-Si Alloy

Mg-Al-Si 합금에서 진동감쇠능의 변형진폭 의존성

  • Jun, Joong-Hwan (Advanced Fusion Process R&D Group, Korea Institute of Industrial Technology)
  • 전중환 (한국생산기술연구원 융합신공정연구그룹)
  • Received : 2011.03.08
  • Accepted : 2011.04.25
  • Published : 2011.05.30

Abstract

Change in damping capacity with strain amplitude was studied in Mg-Al-Si alloy in as-cast, solution-treated and aged states, respectively. The as-cast microstructure of the alloy is characterized by eutectic ${\beta}$($Mg_{17}Al_{12}$) phase and Chinese script type $Mg_2Si$ particles. The solution treatment dissolved the ${\beta}$ phase into the matrix, while the aging treatment resulted in the distribution of continuous and discontinuous type ${\beta}$ precipitates. The solution-treated microstructure showed better damping capacity than as-cast and aged microstructures both in strain-dependent and strain-independent damping regions. The decrease in second-phase particles which weakens the strong pinning points on dislocations and distribution of solute atoms in the matrix, would be responsible for the enhanced damping capacity after solution treatment.

Keywords

References

  1. B. L. Mordike and T. Ebert : Mater. Sci. Eng., A 302 (2001) 37. https://doi.org/10.1016/S0921-5093(00)01351-4
  2. S. Celotto : Acta Mater., 48(2000) 1775. https://doi.org/10.1016/S1359-6454(00)00004-5
  3. E. Cerri and S. Barbagallo : Mater. Lett., 56 (2002) 716. https://doi.org/10.1016/S0167-577X(02)00601-8
  4. P. Zhang : Scripta Mater., 52 (2005) 277. https://doi.org/10.1016/j.scriptamat.2004.10.017
  5. W. Blum, P. Zhang, B. Watzinger, B. V. Grossmann and H. G. Haldenwanger : Mater. Sci. Eng. A, 324 (2002) 141. https://doi.org/10.1016/S0921-5093(01)01296-5
  6. S. Barbagallo, P. Cavaliere and E. Cerri : Mater. Sci. Eng. A, 367 (2004) 9. https://doi.org/10.1016/j.msea.2003.09.101
  7. S. Spigarelli, D. Ciccarelli and E. Evangelista : Mater. Lett., 58 (2004) 460. https://doi.org/10.1016/S0167-577X(03)00525-1
  8. E. Evangelista, E. Gariboldi, O. Lohne and S. Spigarelli : Mater. Sci. Eng. A, 387-389 (2009) 403.
  9. E. Gariboldi and S. Spigarelli : Mater. Design, 24 (2003) 445. https://doi.org/10.1016/S0261-3069(03)00065-7
  10. L. Liao, X. Zhang and H. Wang : Mater. Lett., 59 (2005) 2702. https://doi.org/10.1016/j.matlet.2005.03.055
  11. A. Riviere : J. Alloy Comp., 355 (2003) 201. https://doi.org/10.1016/S0925-8388(03)00287-1
  12. D. Duly, J. P. Simon and Y. Brechet : Acta Metall. Mater., 43 (1994) 101.
  13. A. Granato and K. Lücke : J. Appl. Phys., 27 (1956) 583. https://doi.org/10.1063/1.1722436
  14. A. Granato and K. Lücke : J. Appl. Phys., 27 (1956) 789. https://doi.org/10.1063/1.1722485
  15. J. Göken and W. Riehemann : Mater. Sci. Eng. A, 324 (2002) 127. https://doi.org/10.1016/S0921-5093(01)01294-1
  16. Z. Zhang, X. Zeng and W. Ding : Mater. Sci. Eng. A, 392 (2005) 150. https://doi.org/10.1016/j.msea.2004.09.056