참고문헌
- 김민호, 이충근, 박호기, 이재은, 구본철, 신진철, 2008. Landsat 위성영상을 이용한 벼 생육 및 수량 모니터링, 한국작물학회지, 53(4): 288-393.
- 박노욱, 지광훈, 2007. 타겟 분해 기반 특징과 확률비 모델을 이용한 다중 주파수 편광 SAR자료의 결정 수준 융합, 대한원격탐사학회지, 23(2): 89-101. https://doi.org/10.7780/kjrs.2007.23.2.89
- 이기원, 전소희, 권병두, 2005. GLCM/GLDV 기반 texture 알고리즘 구현과 고해상도 영상분석 적용, 대한원격탐사학회지, 21(2): 121-133. https://doi.org/10.7780/kjrs.2005.21.2.121
- 이상훈, 2003. 퍼지 클래스 벡터를 이용하는 다중센서 융합에 의한 무감독 영상분류, 대한원격탐사학회지, 19(4): 329-339. https://doi.org/10.7780/kjrs.2003.19.4.329
- 장동호, 2005. 고해상도 위성영상을 이용한 홍수 전, 후의 하도 내 퇴적환경 변화 탐지:강릉 사천천 사례연구, 한국지형학회지, 12(3): 49-58.
- 천기선, 박재국, 2007. 산사태 취약지에서의 토지피복 상태 변화추적, 한국지형공간정보학회지, 15(3):69-76.
- 홍창희, 2009. 고해상도 영상자료 및 객체지향분류기법을 이용한 식생분류 정확도 향상 방안 연구, 한국환경영향평가학회지, 18(6): 387-392.
- Bazi, Y. and F. Melgani, 2006. Toward an optimal SVM classification system for hyperspectral remote sensing images, IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3374-3385. https://doi.org/10.1109/TGRS.2006.880628
- Bruzzone, L. and S.B. Serpico, 1997. An iterative technique for the detection of land-cover transitions in multitemporal remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 35(4): 858-867. https://doi.org/10.1109/36.602528
- Camps-Valls, G. and L. Bruzzone, 2009. Kernel Methods for Remote Sensing Data Analysis, Wiley, Chichester, UK.
- Chang C.-C. and C.-J. Lin, 2011. LIBSVM: a library for support vector machines, ACM Transactions on Intelligent Systems and Technology, 2(3): 1-27.
- Cristianini, N. and J. Shawe-Taylor, 2000. An Introduction to Support Vector Machines, Cambridge University Press, Cambridge, UK.
- Ehlers, M., M. Gahler, and R. Janowsky, 2003. Automated analysis of ultra high resolution remote sensing data for biotope type mapping: new possibilities and challenges, ISPRS Journal of Photogrammetry and Remote Sensing, 57(5-6): 315-326. https://doi.org/10.1016/S0924-2716(02)00161-2
- Foody, G.M. and A. Mathur, 2004. A relative evaluation of multi class image classification by support vector machines, IEEE Transactions on Geoscience and Remote Sensing, 42(6): 1335-1343. https://doi.org/10.1109/TGRS.2004.827257
- Johnson, D.M. and R. Mueller, 2010. The 2009 Cropland data layer, Photogrammetric Engineering & Remote Sensing, 76(11): 1201-1205.
- Kalayeh, H.M. and D.A. Landgrebe, 1986. Utilizing multitemporal data by a stochastic model, IEEE Transactions on Geoscience and Remote Sensing, 24(5): 792-795.
- Mathur, A. and G.M. Foody, 2008. Crop classification by support vector machine with intelligently selected training data for an operational application, International Journal of Remote Sensing, 29(8): 2227-2240. https://doi.org/10.1080/01431160701395203
- Melgani, F. and S.B. Serpico, 2002. A statistical approach to the fusion of spectral and spatiotemporal contextual information for the classification of remote-sensing images, Pattern Recognition Letters, 23(9): 1053-1061. https://doi.org/10.1016/S0167-8655(02)00052-1
- Melgani, F. and S.B. Serpico, 2003. A Markov random field approach to spatio-temporal contextual image classification, IEEE Transactions on Geoscience and Remote Sensing, 41(11): 2478-2487. https://doi.org/10.1109/TGRS.2003.817269
- Melgani, F. and L. Bruzzone, 2004. Classification of hyperspectral remote sensing images with support vector machines, IEEE Transactions on Geoscience and Remote Sensing, 42(8): 1778-1790. https://doi.org/10.1109/TGRS.2004.831865
- Oh, H.-J., N.-W. Park, S.-S. Lee, and S. Lee, 2011. Extraction of landslide-related factors from ASTER imagery and its application to landslide susceptibility mapping, International Journal of Remote Sensing, in press.
- Pal, M. and P.M. Mather, 2005. Support vector machines for classification in remote sensing, International Journal of Remote Sensing, 26(5): 1007-1011. https://doi.org/10.1080/01431160512331314083
- Park, N.-W., 2010. Accounting for temporal contextual information in land-cover classification with multi-sensor SAR data, International Journal of Remote Sensing, 31(2): 281-298. https://doi.org/10.1080/01431160902882652
- Swain, P.H., 1978. Bayesian classification in a time-varying environment, IEEE Transactions on Geoscience and Remote Sensing, 8(12): 880-883.
- Vapnik, V.N., 1995. The Nature of Statistical Learning Theory, Springer, New York, USA.
- Yang, C.Z.X., 1998. Study of remote sensing image texture analysis and classification using wavelet, International Journal of Remote Sensing, 19(16): 3197-3203. https://doi.org/10.1080/014311698214262
- Zhao, M., F.A. Heinsch, R.R. Nemani, and S.W. Running, 2005. Improvements of the MODIS terrestrial gross and net primary production global data set, Remote Sensing of Environment, 95(2): 164-176. https://doi.org/10.1016/j.rse.2004.12.011
피인용 문헌
- Early Production of Large-area Crop Classification Map using Time-series Vegetation Index and Past Crop Cultivation Patterns - A Case Study in Iowa State, USA - vol.30, pp.4, 2014, https://doi.org/10.7780/kjrs.2014.30.4.7
- 능동 학습과 시간 문맥 정보를 이용한 작물 재배지역 분류 vol.18, pp.3, 2011, https://doi.org/10.11108/kagis.2015.18.3.076
- 고랭지밭 현황 파악을 위한 Terra MODIS 위성영상 적용 vol.20, pp.3, 2011, https://doi.org/10.11108/kagis.2017.20.3.001