DOI QR코드

DOI QR Code

Reverse-time Migration for VTI and TTI Media

VTI 및 TTI 매질에서의 역시간 구조보정

  • Kwak, Na-Eun (Dept. of Energy Systems Engineering, Seoul National University) ;
  • Min, Dong-Joo (Dept. of Energy Systems Engineering, Seoul National University) ;
  • Bae, Ho-Seuk (Dept. of Energy Systems Engineering, Seoul National University)
  • 곽나은 (서울대학교 에너지시스템공학부) ;
  • 민동주 (서울대학교 에너지시스템공학부) ;
  • 배호석 (서울대학교 에너지시스템공학부)
  • Received : 2011.06.13
  • Accepted : 2011.07.01
  • Published : 2011.08.31

Abstract

Reserve-time migration (RTM) using a two-way wave equation is one of the most accurate migration techniques. RTM has been conducted by assuming that subsurface media are isotropic. However, anisotropic media are commonly encountered in reality. Conventional isotropic RTM may yield inaccurate results for anisotropic media. In this paper, we develop RTM algorithms for vertical transversely isotropic media (VTI) and tilted transversely isotropic media (TTI). For this, the pseudo-acoustic wave equations are used. The modeling algorithms are based on the high-order finite-difference method (FDM). The RTM algorithms are composed using the cross-correlation imaging condition or the imaging condition using virtual sources. By applying the developed RTM algorithms to the Hess VTI and BP TTI models, we could obtain better images than those obtained by the conventional isotropic RTM.

역시간 구조보정은 양방향 파동방정식을 이용하여 지하 구조를 영상화하는 정확성이 높은 구조보정 기법으로, 최근까지 주로 지하 매질을 등방성 매질로 가정하고 실시되어 왔다. 그러나 실제 지하매질은 이방성을 띠는 경우가 많으므로 역시간 구조보정 시 이를 고려한다면 영상의 정확도가 향상될 것으로 기대된다. 이에 본 연구에서는 대표적인 이방성매질인 VTI 및 TTI 매질에서의 역시간 구조보정 기술을 개발하였다. 이를 위하여 탄성 파동방정식을 음향 파동방정식으로 근사시킨 유사음향 파동방정식을 고차근사 유한차분법에 기반하여 모델링하였다. 역시간 구조보정 알고리듬으로는 상호상관을 이용한 영상화 기법과 가상 송신원을 이용한 영상화 기법을 모두 사용하였다. 완성된 알고리듬을 벤치마킹 모델인 Hess VTI 및 BP TTI 모델에 적용해본 결과, 본 연구에서 개발한 역시간 구조보정 알고리듬을 통하여 매질의 이방성을 고려해주었을 때 결과단면의 정확도가 크게 향상되는 것을 확인할 수 있었다.

Keywords

Acknowledgement

Supported by : 한국에너지기술평가원(KETEP)

References

  1. 변중무, 2008, 극이방성 매질의 이방성 특성이 전파형음파검층에 미치는 영향, 한국지구시스템공학회지, 45, 635-648.
  2. 이호용, 민동주, 권병두, 유해수, 2008a, 셀 기반 유한차분법을 이용한 이방성 매질에서의 시간영역 탄성파 모델링, 한국지구시스템공학회지, 45, 536-545.
  3. 이호용, 민동주, 권병두, 임승철, 유해수, 2008b, 이방성을 고려한 시간영역 유한차분법 탄성파 모델링에서의 경계조건, 지구물리와물리탐사, 11, 153-160.
  4. 장성형, 양승진, 황세호, 김중열, 1993, 횡적등방성 지층의 시추공 간 탄성파 주시자료의 토모그래피 역산 연구, 지질공학, 3, 231-239.
  5. 정창호, 서정희, 2007, 불균질 횡등방성 매질에서의 탄성파 주시토모그래피, 지구물리와물리탐사, 10, 229-240.
  6. 하영수, 신성렬, 2010, VTI 매질의 탄성파 이방성 축소모형실험, 지구물리와물리탐사, 13, 307-314.
  7. 하영수, 신성렬, 2011, 축소모형 실험을 이용한 횡적등방성 매질에서의 탄성파 이방성 특성, 한국지구시스템공학회지, 48, 115-126.
  8. 한병호, 설순지, 변중무, 2010, CPML 경계조건을 적용한 Tilted Transversely Isotropic (TTI) 매질에서의 탄성파 모델링, 2010 한국지구물리.물리탐사학회 학술대회 초록집, 한국지구물리.물리탐사학회, 강원대학교, 춘천, 10월 7-8일, 79-82.
  9. Alkhalifah, T., 2000, An acoustic wave equation for anisotropic media, Geophysics, 65, 1239-1250. https://doi.org/10.1190/1.1444815
  10. Baysal, E., Kosloff, D. D., and Sherwood, J. W. C., 1983, Reverse time migration, Geophysics, 48, 1514-1524. https://doi.org/10.1190/1.1441434
  11. Chu, C., Macy, B. K., and Anno P. D., 2011, Accurate and Efficient Pure Acoustic Wave Propagation in VTI Media, 73rd Conference and Exhibition, EAGE, Vienna, Austria, May 23-26, C021.
  12. Claerbout, J., 1985, Imaging the earth's interior, Blackwell Scientific Publishers, Cambridge, Massachusetts, USA.
  13. Claerbout, J. F., 1971, Toward a unified theory of reflector mapping, Geophysics, 36, 467-481. https://doi.org/10.1190/1.1440185
  14. Daley, P. F., and Hron, F., 1977, Reflection and transmission coefficients for transversely isotropic media, Bulletin of the Seismological Society of America, 67, 661-675.
  15. Du, X., Fletcher, R., and Fowler, P. J., 2008, A new pseudoacoustic wave equation for VTI media, 70th Conference and Exhibition, EAGE, Rome, Italy, June 9-12, H033.
  16. Du, X., Fletcher, R., and Fowler, P. J., 2010, Pure P-wave Propagators Versus Pseudo-acoustic Propagators for RTM in VTI Media, 72nd EAGE Conference and Exhibition, EAGE, Barcelona, Spain, June 14-17, C013.
  17. Duveneck, E., Milcik, P., Bakker, P. M., and Perkins, C., 2008, Acoustic VTI wave equations and their application for anisotropic reverse-time migration, 78th Annual International Meeting, Society of Exploration Geophysicists, Las Vegas, Nevada, USA, November 9-14, 2186-2190.
  18. Fletcher, R., Du, X., and Fowler, P. J., 2008, A new pseudoacoustic wave equation for TI media, 78th Annual International Meeting, Society of Exploration Geophysicists, Las Vegas, Nevada, USA, November 9-14, 2082-2086.
  19. Fletcher, R., Du X., and Fowler, P. J., 2009, Reverse time migration in TTI media, Geophysics, 74, WCA179-WCA187. https://doi.org/10.1190/1.3269902
  20. Grechka, V., Zhang, L., and Rector, J. W., 2004, Shear waves in acoustic anisotropic media, Geophysics, 69, 576-582. https://doi.org/10.1190/1.1707077
  21. Hestholm, S., 2007, Acoustic VTI modeling using high-order finite-differences, 77th Annual International Meeting, Society of Exploration Geophysicists, San Antonio, Texas, USA, September 23-28, 139-143.
  22. Ikelle, L. T., and Amundsen, L., 2005, Introduction to petroleum seismology, Society of Exploration Geophysicists, Tulsa, Oklahoma.
  23. Klie, H., and Toro, W., 2001, A new acoustic wave equation for modeling in anisotropic media, 71st Annual International Meeting, Society of Exploration Geophysicists, San Antonio, Texas, USA, September 9-14, 1171-1174.
  24. Liner, C. L., 1999, On the history and culture of geophysics and science in general, The Leading Edge, 18, 568-569. https://doi.org/10.1190/1.1438335
  25. Liu, F., Morton, S. A., Jiang, S., Ni, L., and Leveille, J. P., 2009, Decoupled wave equations for P and SV waves in an acoustic VTI media, 79th Annual International Meeting, Society of Exploration Geophysicists, Huston, Texas, USA, October 25- 30, 2844-2848.
  26. Shin, C., Min, D.-J., Yang, D., and Lee, S.-K., 2003, Evaluation of poststack migration in terms of virtual source and partial derivative wavefields, Journal of Seismic Exploration, 12, 17-37.
  27. Thomsen, L., 1986, Weak elastic anisotropy, Geophysics, 51, 1954-1996. https://doi.org/10.1190/1.1442051
  28. Tsvankin, I., 2001, Seismic signatures and analysis of reflection data in anisotropic media, Permagon Press.
  29. Whitmore, N. D., 1983, Iterative depth migration by backward time propagation, 53rd Annual International Meeting, Society of Exploration Geophysicists, Las Vegas, Nevada, USA, September 11-15, 382-385.
  30. Yan, J., and Sava, P., 2008, Isotropic angle-domain elastic reverse-time migration, Geophysics, 73, S229-S239. https://doi.org/10.1190/1.2981241
  31. Yilmaz, O., 2001, Seismic data analysis: Processing, inversion, and interpretation of seismic data, 2nd edition, Society of Exploration Geophysicists, Tulsa, Oklahoma, USA.
  32. Zhang, H., and Zhang, Y., 2008, Reverse time migration in 3D heterogeneous TTI media, 78th Annual International Meeting, Society of Exploration Geophysicists, Las Vegas, Nevada, USA, November 9-14, 2196-2200.
  33. Zhang, Y., and Sun J., 2009, Practical issues in reverse time migration: true amplitude gathers, noise removal and harmonic source encoding, First break, 27, 53-59.
  34. Zhou, H., Zhang, G., and Bloor, R., 2006a, An anisotropic acoustic wave equation for VTI media, 68th EAGE Conference and Exhibition, EAGE, Vienna, Austria, June 12-15, H033.
  35. Zhou, H., Zhang, G., and Bloor, R., 2006b, An anisotropic acoustic wave equation for modeling and migration in 2D TTI media, 76th Annual International Meeting, Society of Exploration Geophysicists, New Orleans, Louisiana, USA, October 1-6, 194-198.