DOI QR코드

DOI QR Code

사용자 행동 자세를 이용한 시각계 기반의 감정 인식 연구

A Study on Visual Perception based Emotion Recognition using Body-Activity Posture

  • 김진옥 (대구한의대학교 국제문화정보대학 모바일콘텐츠학부)
  • 투고 : 2011.04.28
  • 심사 : 2011.06.13
  • 발행 : 2011.10.31

초록

사람의 의도를 인지하기 위해 감정을 시각적으로 인식하는 연구는 전통적으로 감정을 드러내는 얼굴 표정을 인식하는 데 집중해 왔다. 최근에는 감정을 드러내는 신체 언어 즉 신체 행동과 자세를 통해 감정을 나타내는 방법에서 감정 인식의 새로운 가능성을 찾고 있다. 본 연구는 신경생리학의 시각계 처리 방법을 적용한 신경모델을 구축하여 행동에서 기본 감정 의도를 인식하는 방법을 제안한다. 이를 위해 시각 피질의 정보 처리 모델에 따라 생물학적 체계의 신경모델 검출기를 구축하여 신체 행동의 정적 자세에서 6가지 주요 기본 감정을 판별한다. 파라미터 변화에 강건한 제안 모델의 성능은 신체행동 자세 집합을 대상으로 사람 관측자와의 평가 결과를 비교 평가하여 가능성을 제시한다.

Research into the visual perception of human emotion to recognize an intention has traditionally focused on emotions of facial expression. Recently researchers have turned to the more challenging field of emotional expressions through body posture or activity. Proposed work approaches recognition of basic emotional categories from body postures using neural model applied visual perception of neurophysiology. In keeping with information processing models of the visual cortex, this work constructs a biologically plausible hierarchy of neural detectors, which can discriminate 6 basic emotional states from static views of associated body postures of activity. The proposed model, which is tolerant to parameter variations, presents its possibility by evaluating against human test subjects on a set of body postures of activities.

키워드

참고문헌

  1. P. Ekman, Universal facial expressions of emotion, California Mental Health Research Digest, Vol.8, pp.151-158, 1970.
  2. N. H. Frijda, The Emotions, Cambridge University Press, 1986.
  3. P. Ekman, Facial expression and emotion, American Psychologist, Vol.48, 1993.
  4. C. Padgett, G. W. Cottrell, Representing face images for emotion classification, Proc. Advances in Neural Information Processing Systems, Vol.9, MIT Press, 1996.
  5. M. N. Dailey, G. W. Cotrell, C. Padgett, R. Adolphs, EMPATH: a neural network that categorizes facial expressions, Journal of Cognitive Neuroscience, Vol.14, No.8, pp.1158-1173, 2002. https://doi.org/10.1162/089892902760807177
  6. N. Fragopanagos, J. G. Taylor, Emotion recognition in human-computer interaction, Neural Networks, Vol.18, pp.389-405, 2005. https://doi.org/10.1016/j.neunet.2005.03.006
  7. P. Ekman, An argument for basic emotions, Cognition and Emotion, Vol.6, 169, pp.384-392, 1992.
  8. M. V. Peelen, P. E. Downing, The neural basis of visual body perception, Nature Reviews Neuroscience, Vol.8, No.8, pp.636-648, 2007. https://doi.org/10.1038/nrn2195
  9. J. J. Stekelenburg, B. de Gelder, The neural correlates of perceiving human bodies: An ERP study on the body-inversion eect, Neuroreport, Vol.15 , No.5, pp.777-780, 2004. https://doi.org/10.1097/00001756-200404090-00007
  10. N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, Proc. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol.1, pp.886-893, 2005.
  11. Z. Zeng, M. Pantic, G. Roisman, T. Huang, A survey of affect recognition methods: Audio, visual, and spontaneous expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.31, No.1, pp,39-48, 2009. https://doi.org/10.1109/TPAMI.2008.52
  12. T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, T. Poggio, Robust object recognition with cortex-like mechanisms, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.29, No.3, pp.411-426, 2006.
  13. A. J. Calder, A. W. Young, D. I. Perrett, N. L. Etco, D. Rowland, Categorical perception of morphed facial expressions, Visual Cognition, Vol.3, pp.81-117, 1996. https://doi.org/10.1080/713756735
  14. B. de Gelder, J. P. Teunisse, P. J. Benson, Categorical perception of facial expressions: categories and their internal structure, Cognition and Emotion, Vol.11, No.1, pp.1-23, 1997. https://doi.org/10.1080/026999397380005
  15. B. de Gelder, Towards the neurobiology of emotional body language, Nature Reviews Neuroscience, Vol.7, No.3, pp.242-249, 2006. https://doi.org/10.1038/nrn1872
  16. H. K. M. Meeren, C. van Heijnsbergen, B. de Gelder, Rapid perceptual integration of facial expression and emotional body language, Proc. National Academy of Sciences of the USA, Vol.102, No.45, pp.16518-16523, 2005. https://doi.org/10.1073/pnas.0507650102
  17. D. J. Felleman, D. C. van Essen, Distributed hierarchical processing in the primate visual cortex, Cerebral Cortex, Vol.1, pp.1-47, 1991.
  18. M. Riesenhuber, T. Poggio. Hierarchical model of object recognition in cortex, Nature Neuroscience, Vol.2, pp.1019-1025, 1999. https://doi.org/10.1038/14819
  19. D. J. Field, Relations between the statistics of natural images and the response properties of cortical cells, Journal of The Optical Society of America A, Vol.4, No.12, pp.2379-2394, 1987. https://doi.org/10.1364/JOSAA.4.002379
  20. J. Hedge, D. C. van Essen, Selectivity for complex shapes in primate visual area V2, Journal of Neuroscience, Vol. 20(RC61), pp.1-6, 2000.
  21. K. Fukushima, Neocognitron: a self-organizing neural network model for mechanisms of pattern recognition unacted by shift in position, Biological Cybernetics, Vol.36, pp.193-202, 1980. https://doi.org/10.1007/BF00344251
  22. T. J. Gawne, J. Martin, Response of primate visual cortical V4 neurons to two simultaneously presented stimuli, Journal of Neurophysiology, Vol.88, No.17, pp.1128-1135. 2002. https://doi.org/10.1152/jn.2002.88.3.1128
  23. I. Lampl, D. Ferster, T. Poggio, M. Riesenhuber, Intracellular measurements of spatial integration and the max operation in complex cells of the cat primary visual cortex, Journal of Neurophysiology, Vol.9292, pp.2704-2713, 2004.
  24. N. K. Logothetis, J. Pauls, T. Poggio, Shape representation in the inferior temporal cortex of monkeys, Current Biology, Vol.5, pp.552-563, 1995. https://doi.org/10.1016/S0960-9822(95)00108-4
  25. D. Anguita, A. Boni, Improved neural network for SVM learning, IEEE Transactions on Neural Networks, Vol.13, pp.1243-1244, 2002. https://doi.org/10.1109/TNN.2002.1031958
  26. M. A. Giese, T. Poggio, Neural mechanisms for the recognition of biological movements, Nature Neuroscience, Vol.4, pp.179-192, 2003. https://doi.org/10.1038/nrn1057
  27. J. A. Beintema, M. Lappe, Perception of biological motion without local image motion, Proc. National Academy of Sciences of the USA, Vol.99, pp. 5661-5663, 2002. https://doi.org/10.1073/pnas.082483699
  28. P. Downing, Y. Jiang, M. Shuman, N. A. Kanwisher, A cortical area selective for visual processing of the human body, Science, Vol.293, pp.2470-2473, 2001. https://doi.org/10.1126/science.1063414
  29. N. Sebe, Y. Sun, E. Bakker, M. Lew, I. Cohen, T. Huang, Towards authentic emotion recognition, Proc. International Conference on Systems, Man, and Cybernetics, 2004.
  30. 김진옥, 상황에 민감한 베이지안분류기를 이용한 얼굴표정 기 반의 감정인식, 한국정보처리학회논문지, 13-B권, pp. 653-662, 2006. https://doi.org/10.3745/KIPSTB.2006.13B.7.653
  31. B. Boulay, F. Bremond, M. Thonnat, Applying 3D human model in a posture recognition system, Pattern Recognition Letters, Vol.27, No.15, pp.1788-1796, 2006. https://doi.org/10.1016/j.patrec.2006.02.008
  32. M. W. Lee, I. Cohen, A model-based approach for estimating human 3D poses in static images, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.28, No.6, pp.905-916, 2006. https://doi.org/10.1109/TPAMI.2006.110
  33. S. Ali, M. Shah, Human action recognition in videos using kinematic features and multiple instance learning, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.32, No.2, pp.288-303, 2010. https://doi.org/10.1109/TPAMI.2008.284

피인용 문헌

  1. BoF based Action Recognition using Spatio-Temporal 2D Descriptor vol.16, pp.3, 2015, https://doi.org/10.7472/jksii.2015.16.3.21
  2. A Bio-Inspired Modeling of Visual Information Processing for Action Recognition vol.3, pp.8, 2014, https://doi.org/10.3745/KTSDE.2014.3.8.299
  3. Bio-mimetic Recognition of Action Sequence using Unsupervised Learning vol.15, pp.4, 2014, https://doi.org/10.7472/jksii.2014.15.4.09