DOI QR코드

DOI QR Code

Removal of BrO3- from aqueous solution

수용액에서 브롬산 이온을 제거하는 방법

  • Lim, Heon-Sung (Center for Chemical Analysis, Korea Research Institute of Chemical Technology) ;
  • Kim, Chong-Hyeak (Center for Chemical Analysis, Korea Research Institute of Chemical Technology) ;
  • Lee, Sueg-Geun (Center for Chemical Analysis, Korea Research Institute of Chemical Technology)
  • 임헌성 (한국화학연구원 화학분석센터) ;
  • 김종혁 (한국화학연구원 화학분석센터) ;
  • 이석근 (한국화학연구원 화학분석센터)
  • Received : 2011.08.16
  • Accepted : 2011.09.05
  • Published : 2011.10.25

Abstract

The efficient removal of bromate ($BrO_3^-$) from aqueous solutions was investigated using activated alumina. Bromate is a disinfection by-product, generally formed by the reaction of ozone and bromide in drinking water during ozonation process. The removal efficiency was about 90% for bromate (500 ng/mL) ion with acidic activated alumina but over 95% with silver or aluminum treated acidic activated alumina without any treatments of neutral water within 1~2 min.

본 연구는 수용액 중의 발암물질로 규제되고 있는 브롬산 이온($BrO_3^-$)을 제거하는 방법에 관한 것이다. 브롬산 이온은 먹는 물의 정수 과정 중 브롬 이온의 존재 하에 오존 처리과정에서 생성되는 물질이다. 본 방법은 별다른 물리적 화학적 변화의 과정이 필요하지 않고, 활성알루미나를 이용하여 효과적으로 제거할 수 있어 먹는 물 등의 정수에도 유용하게 적용될 수 있다. 브롬산 이온 500 ${\mu}g$/L 농도의 용액을 표면 개질된 산성 활성알루미나를 사용하여 1~2 분 내에 95% 이상 제거하는 효과를 나타내었다.

Keywords

References

  1. W. R. Haag, Environ. Sci. Technol., 17, 261-267 (1983). https://doi.org/10.1021/es00111a004
  2. Y. Kurogawa, Y. Hagashi, Y. Maekawa, M. Takahashi and T. Kokubo, Gann, 73, 335-341 (1982).
  3. D. C. Wolf, L. M. Crosby, M. H. George, S. R. Kilburn, T. M. Moore, R. T. Miller and A. B. deAngelo, Toxicol. Pathol,. 26, 724-729 (1998). https://doi.org/10.1177/019262339802600602
  4. W. J. Hunag and Y. L. Cheng, Sep. Purif. Technol., 59, 101-107 (2008). https://doi.org/10.1016/j.seppur.2007.05.034
  5. T. F. Marhaba and K. Benggraine, Clean Technol. Environ. Policy, 5, 101-112 (2003). https://doi.org/10.1007/s10098-002-0177-4
  6. European Union, Official J. Eur, Communities, 11, 23(L229) 1980.
  7. U.S. EPA National primary drinking water standards, http://www.epa.gov/safewater/contaminants/index.html#listmcl.
  8. WHO, Guide lines for drinking water quality, Chemical Aspect, Vol. 2, Geneva 1996.
  9. L. S. Downing and R. Nerenberg, Biotechnol. Bioeng., 98, 543-550 (2007). https://doi.org/10.1002/bit.21442
  10. R. Butler, A. Godley, L. Lytton and E. Cartmell, Crit. Rev. Environ. Sci. Technol., 35, 193-217 (2005). https://doi.org/10.1080/10643380590917888
  11. H. Kim, H. Yamada and H. Tsuno, Water Res., 41, 1441-1446 (2007). https://doi.org/10.1016/j.watres.2006.12.042
  12. B. Legube, B. Parinet, K. Gerinet, F. Berne and J. P. Croue, Water Res., 38, 2185-2195 (2004). https://doi.org/10.1016/j.watres.2004.01.028
  13. U. Pinkernell and U. von Gunten, Environ. Sci. Technol., 35, 2525-2531 (2001). https://doi.org/10.1021/es001502f
  14. L. Wang, J. Zhang, J. Liu, H. He, M. Yang, J. Yu, Z. Ma and F. Jiang, J. Environ. Sci., 22(12), 1846-1853 (2010). https://doi.org/10.1016/S1001-0742(09)60330-2
  15. M. L. Bao, O. Griffini, D. Santianni, K. Barbieri, D. Burrini and F. Pantani, Water Res., 33(13), 2959-2970 (1999). https://doi.org/10.1016/S0043-1354(99)00015-9
  16. A. H. Konsowa, Desalination and Water Treatment, 12, 375-381(2009). https://doi.org/10.5004/dwt.2009.1072
  17. M. Asami, T. Aizawa, T. Morioka, W. Nishijima, A. Tabata and Y. Magara, Water Res., 33(12), 2797-2804 (1999). https://doi.org/10.1016/S0043-1354(98)00504-1
  18. W. J. Huang, C. Y. Chen and M. Y. Peng, Water SA, 30(3), 369-375 (2004).
  19. S. W. Choi and S. C. Park, J. of KSEE, 26(2), 178-182 (2006).
  20. C. T. Matos, S. Velizarov, M. A. M. Reis and J. G. Crespo, Environ. Sci. Technol., 42, 7702-7708 (2008). https://doi.org/10.1021/es801176f
  21. F. M. M. Paschoal, G. Pepping, M. V. B. Zanoni and M. A. Anderson, Environ. Sci. Technol., 43, 7496-7502 (2009). https://doi.org/10.1021/es803366d