DOI QR코드

DOI QR Code

원소 황 입자와 활성 슬러지를 이용한 독립영양방식의 퍼클로레이트 제거: 회분배양연구

Autotrophic Perchlorate-Removal Using Elemental Sulfur Granules and Activated Sludge: Batch Test

  • 투고 : 2011.08.24
  • 심사 : 2011.09.22
  • 발행 : 2011.10.31

초록

퍼클로레이트($ClO_4^-$)는 지표수 및 토양/지하수에서 검출되는 오염물이다. 미생물은 퍼클로레이트를 무해한 최종산물로 환원시킬 수 있으므로 퍼클로레이트제거는 미생물을 이용한 방법이 가장 적절한 것으로 알려졌다. 미생물이 퍼클로레이트를 환원시키기 위해서는 전자 공여체가 필요하다. 퍼클로레이트를 환원하기 위한 기존의 기술들은 전자 공여체로서 유기물을 사용하는 종속영양방식의 퍼클로레이트환원세균을 사용한다. 그래서 종속영양 방식으로 퍼클로레이트를 연속 제거하기 위해서는 지속적으로 유기물을 공급해야 하므로 처리비용이 많이 든다. 본 연구에서는 원소 황 입자와 활성 슬러지를 이용하여 독립영양방식의 퍼클로레이트제거가능성을 조사하였다. 입자상 황은 비교적 값이 저렴하고 활성 슬러지는 하수처리장으로부터 쉽게 구할 수 있는 장점이 있다. 회분배양 실험결과 활성 슬러지 미생물은 전자 공여체로서 황 입자가 존재할 때 퍼클로레이트를 제거할 수 있다는 것이 증명되었다. 이러한 퍼클로레이트 분해는 퍼클로레이트가 분해됨에 따라 생성되는 Cl-의 몰 농도를 통해 검증할 수 있었다. 독립영양방식의 $ClO_4^-$ 제거공정에 사용된 황 입자의 표면에 간균 형태의 미생물들이 존재한다는 것을 주사전자현미경을 통해 관찰하였다. 그래서 황 입자가 생물막을 형성하기 위한 담체로도 작용할 수 있다는 것을 알 수 있었다. 황입자가 첨가된 $ClO_4^-$ 분해성 농화 배양으로부터 채취한 생물막의 미생물군집조성은 접종균으로 사용된 활성 슬러지의 그것과는 다름이 DGGE 분석결과 나타났다.

Perchlorate ($ClO_4^-$) is a contaminant found in surface water and soil/ground water. Microbial removal of perchlorate is the method of choice since microorganisms can reduce perchlorate into harmless end-products. Such microorganisms require an electron donor to reduce perchlorate. Conventional perchlorate-removal techniques employ heterotrophic perchlorate-reducing bacteria that use organic compounds as electron donors to reduce perchlorate. Since continuous removal of perchlorate requires a continuous supply of organic compounds, heterotrophic perchlorate removal is an expensive process. Feasibility of autotrophic perchlorate-removal using elemental sulfur granules and activated sludge was examined in this study. Granular sulfur is relatively inexpensive and activated sludge is easily available from wastewater treatment plants. Batch tests showed that activated sludge microorganisms could successfully degrade perchlorate in the presence of granular sulfur as an electron donor. Perchlorate biodegradation was confirmed by molar yield of $Cl^-$ as the perchlorate was degraded. Scanning electron microscope revealed that rod-shaped microorganisms on the surface of sulfur particles were used for the autotrophic perchlorate-removal, suggesting that sulfur particles could serve as supporting media for the formation of biofilm as well. DGGE analyses revealed that microbial profile of the inoculum (activated sludge) was different from that of the biofilm sample obtained from enrichment culture that used sulfur particles for $ClO_4^-$-degradation.

키워드

참고문헌

  1. Ahn, Y., E. J. Park, Y. K. Oh, S. Park, and G. Webster, and A. J. Weightman. 2005. Biofilm microbial community of a thermophilic trickling biofilter used for continuous biohydrogen production. FEMS Microbiol. Lett. 249, 31-38. https://doi.org/10.1016/j.femsle.2005.05.050
  2. APHA. 1995. Standard methods for examination of water and wastewater. 19th eds. American Public Health Association, Washington, D. C., USA.
  3. Coates, J. D. and L. A. Achenbach. 2004. Microbial perchlorate reduction: Rocket-fuelled metabolism. Nat. Rev. Microbiol. 2, 569-580. https://doi.org/10.1038/nrmicro926
  4. Finster, K., W. Liesack, and B. Thamdrup. 1998. Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment. Appl. Environ. Microbiol. 64, 119-125.
  5. Kim, H., J. Kim, and Y. Lee. 2007. Occurrence of perchlorate in drinking water in Korea. J. Korean Soc. Water Quality 23, 822-828.
  6. Kim, H., J. Kim, Y. Lee, J. Lee, and S. Kim. 2008. Perchlorate in advanced drinking water treatment process. J. Korean Soc. Water Quality 24, 164-168.
  7. Lee, C. 2009. Optimum treatment of sewage and wastewater discharged in Gumi industrial complex. Final report 09-2-10-16-5. Gyeongbuk regional environment technology development center. Gyeongbuk, Korea.
  8. Lee, K., S. Kim, K. Lee, and O. Kwon. 2010. Biological treatment of perchlorate in inorganic wastewater from primary zinc smelting industry. Proceedings of Korean Soc. on Water Quality April 16. Taejon, Korea. 103-104.
  9. Logan, B. E. 1998. A review of chlorate-and perchlorate-respiring microorganisms. Bioremediation J. 2, 69-79. https://doi.org/10.1080/10889869891214222
  10. Miller, J. P. and B. E. Logan. 2000. Sustained perchlorate degradation in an autographic, gas-phase, packed-bed bioreactor. Environ. Sci. Technol. 34, 3018-3022. https://doi.org/10.1021/es991155d
  11. Min, B., P. J. Evans, A. K. Chiu, and B. E. Logan. 2004. Perchlorate removal in sand and plastic media bioreactors. Water Res. 38, 47-60. https://doi.org/10.1016/j.watres.2003.09.019
  12. Motzer, W. E. 2001. Perchlorate: problems, detection, and solutions. Environ. Forensics 2, 301-311. https://doi.org/10.1006/enfo.2001.0059
  13. National Research Council. 2005. Health implications of perchlorate ingestion. National Academy of Sciences. Washington, D. C., USA.
  14. Republic of Korea Ministry of Environment. 2007. Notice on amendment of law relating to conservation of water quality and water ecosystem. Notice No. 2007-419.
  15. Republic of Korea Ministry of Environment. 2010. Guideline for the management of drinking water quality monitoring items.
  16. Shin, K. H., A. Son, D. K. Cha, and K. W. Kim. 2007. Review on risks of perchlorate and treatment technologies. J. Korean Soc. Environ. Eng. 29, 1060-1068.
  17. US EPA. 1999. EPA METHOD 314.0: Determination of perchlorate in drinking water using ion chromatography.

피인용 문헌

  1. Characterization of Perchlorate-Removal Using Elemental Sulfur Granules and Activated Sludge vol.23, pp.5, 2013, https://doi.org/10.5352/JLS.2013.23.5.676
  2. Analysis of a Sulfur-oxidizing Perchlorate-degrading Microbial Community vol.26, pp.1, 2016, https://doi.org/10.5352/JLS.2016.26.1.68