DOI QR코드

DOI QR Code

Characterization of the Promoter Controling the Stage-Specific Gene Expression of Bombyx mori

누에를 이용한 시기 특이적 발현 조절 유전자 promoter 개발

  • Park, Seung-Won (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Choi, Gwang-Ho (Research Policy Planning Division, Rural Development Administration) ;
  • Goo, Tae-Won (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Seong-Ryul (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Kang, Seok-Woo (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA)
  • 박승원 (농촌진흥청 국립농업과학원 농업생물부 잠사양봉소재과) ;
  • 최광호 (농촌진흥청 연구정책국 연구정책과) ;
  • 구태원 (농촌진흥청 국립농업과학원 농업생물부 잠사양봉소재과) ;
  • 김성렬 (농촌진흥청 국립농업과학원 농업생물부 잠사양봉소재과) ;
  • 강석우 (농촌진흥청 국립농업과학원 농업생물부 잠사양봉소재과)
  • Received : 2011.08.19
  • Accepted : 2011.09.16
  • Published : 2011.10.31

Abstract

We characterized embryo early gene (EEG)-704 promoter of the silkworm Bombyx mori, which is specifically regulated in the development stages. To determine core promoter region, 10 different partial mutant clones were tested by luciferase assay in Sf9 cells. About 1.5 kb promoter shows higher luciferase activity than constitutive promoter (BmA3). Interestingly, EEG-704 shares the same DNA sequences with BmHsp20.8 by the result of BLAST analysis; its expression is also increased under heat shock condition. Development of such promoter inducible, directly or indirectly in the developmental-stage, is very useful in making recombinant proteins in transgenic silkworms.

본 연구에서는 누에의 초기 배아시기에 유전자 발현 조절이 가능한 EEG-704 promoter를 개발하고자 하였다. Promoter의 핵심 영역을 결정하기 위하여, 10개의 서로 다른 partial mutant clone들을 만들고 이를 Sf9 곤충세포주에 도입하여 luciferase assay 방법을 사용하여 각각의 clone의 활성을 분석하였다. Constitutive promoter인 BmA3 promoter에 의한 활성과 비교하였을 때, 약 1.5 kb의 promoter 염기서열을 포함하는 clone이 가장 높은 luciferase 발현율을 나타내었다. 특히 EEG-704 유전자의 경우 BLAST를 이용한 유전자 비교 분석의 결과 누에의 열충격 단백질20.8 (BmHsp20.8) 과 동일한 것으로 밝혀졌으며, 정상 온도조건과 비교하였을 때 열충격을 가한 조건하에서 발현율이 증가하는 현상을 나타내었다. 특이적으로 발생단계에서 직 간접적으로 발현 조절이 가능한 이러한 promoter는 여러 유용 재조합 단백질 생산을 위한 형질전환 누에 개발 시 매우 유용할 것으로 생각된다.

Keywords

References

  1. Feder, M. E. 1996. Ecological and evolutionary physiology of stress proteins and the stress response: the Drosophila melanogaster model. In I. A. Johnston, and A. F. Bennett, eds., Animals and Temperature: Phenotypic and Evolutionary Adaptation, pp. 79-102, Cambridge University Press, Cambridge.
  2. Feder, M. E., and R. A. Krebs. 1997. Environmental stress, Adaption and Evolution. pp. 155-173, Birkhauser, Basel.
  3. Fuchs, S., X. Jiang, H. Schmidt, E. Dohle, S. Ghanaati, C. Orth, A. Hofmann, A. Motta, C. Migliaresi, and C. J. Kirkpatrick. 2009. Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells. Biomaterials 30, 1329-1338. https://doi.org/10.1016/j.biomaterials.2008.11.028
  4. Gong, Z. H., H. Q. Jin, Y. F. Jin, and Y. Z. Zhang. 2005. Expression of Cholera Toxin B Subunit and Assembly as Functional Oligomers in Silkworm. J. Biochem. Mol. Biol. 38, 717-724. https://doi.org/10.5483/BMBRep.2005.38.6.717
  5. Goo, T. W., S. W. Kim, S. R. Kim, S. W. Park, S. W., Kang, K. G. Lee, O. Y. Kwon, and E. Y. Yun. 2010. Utilization of the Bombyx mori Hypothetical Protein 32 Promoter for Efficient Transgene Expression. Int. J. Indust. Entomol. 20, 107-114.
  6. International Silkworm Genome Consortium. 2008. The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem. Mol. Biol. 38, 1036-1045. https://doi.org/10.1016/j.ibmb.2008.11.004
  7. Mita, K., M. Morimyo, K. Okano, Y. Koike, J. Nohata, H. Kawasaki, K. Kadono-Okuda, K. Yamamoto, M. G. Suzuki, T. Shimada, M. R. Goldsmith, and S. Maeda. 2003. The construction of an EST database for Bombyx mori and its application. Proc. Natl. Acad. Sci. USA 100, 14121-14126. https://doi.org/10.1073/pnas.2234984100
  8. Mita, K., M. Kasahara, S. Sasaki, Y. Nagayasu, T. Yamada, H. Kanamori, N. Namiki, M. Kitagawa, H. Yamashita, Y. Yasukochi, K. Kadono-Okuda, K. Yamamoto, M. Ajimura, G. Ravikumar, M. Shimomura, Y. Nagamura, T. Shin-I, H. Abe H, T. Shimada, S. Morishita, and T. Sasaki. 2004. The genome sequence of silkworm, Bombyx mori. DNA Res. 29, 27-35.
  9. Ote, M., K. Mita, H. Kawasaki, M. Seki, J. Nohata, M. Kobayashi, and T. Shimada. 2004. Microarray analysis of gene expression profiles in wing discs of Bombyx mori during pupal ecdysis. Insect Biochem. Mol. Biol. 34, 775-784. https://doi.org/10.1016/j.ibmb.2004.04.002
  10. Park, S. W., S. W. Kang, T. W. Goo, S. R. Kim, G. G. Lee, and S. Y. Paik. 2010. Tissue-specific gene expression analysis of silkworm (Bombyx mori) by Quantitative Real-Time RT-PCR. BMB Rep. 43, 480-484. https://doi.org/10.5483/BMBRep.2010.43.7.480
  11. Parthasarathy, R., and K. P. Gopinathan. 2005. Comparative analysis of the development of the mandibular salivary glands and the labial silk glands in the mulberry silkworm, Bombyx mori. Gene Expr. Patterns 5, 323-339. https://doi.org/10.1016/j.modgep.2004.10.006
  12. Ponnuvel, K. M., G. N. Murthy, A. K. Awasthi, G. Rao, and N. B. Vijayaprakash. 2010. Differential gene expression during early embryonic development in diapause and non-diapause eggs of multivoltine silkworm Bombyx mori. Indian J. Exp. Biol. 48, 1143-1151.
  13. Sakano, D., B. Li, Q. Xia, K. Yamamoto, H. Fujii, and Y. Aso. 2006. Genes encoding small heat shock proteins of the silkworm, Bombyx mori. Biosci. Biotechnol. Biochem. 70, 2443-2450. https://doi.org/10.1271/bbb.60176
  14. Tang, S., Q. Zhao, Y. Yi, Z. Zhang, and Y. Li. 2005. Homologous region 3 from Bombyx mori nucleopolyhedrovirus enhancing the transcriptional activity of heat shock cognate 70-4 promoter from Bombyx mori and Bombyx mandarina in vitro and in vivo. Biosci. Biotechnol. Biochem. 69, 1014-1017. https://doi.org/10.1271/bbb.69.1014
  15. Velu, D., K. M. Ponnuvel, and S. M. Hussaini Qadri. 2008. Expression of the Heat Shock Protein Genes in Response to Thermal Stress in the Silkworm Bombyx mori. Int. J. Indust. Entomol. 16, 21-27.
  16. Welte, M. A., J. M. Tetrault, R. P. Dellavalle, and S. L. Lindquist. 1993. A new method for manipulating transgenes: engineering heat tolerance in a complex, multicellular organism. Curr. Biol. 3, 842-853. https://doi.org/10.1016/0960-9822(93)90218-D
  17. Yun, E. Y., J. K. Lee, O. Y. Kwon, J. S. Hwang, I. Kim, S. W. Kang, W. J. Lee, J. L. Ding, K. H. You, and T. W. Goo. 2009. Bombyx mori transferrin: Genomic structure, expression and antimicrobial activity of recombinant protein. Dev. Comp. Immunol. 33, 1064-1069. https://doi.org/10.1016/j.dci.2009.05.008

Cited by

  1. Characterization of the RNA binding protein-1 gene promoter of the silkworm silk grands vol.52, pp.1, 2014, https://doi.org/10.7852/jses.2014.52.1.39
  2. Gene expression profile of the early embryonic gene of the silkworm, Bombyx mori vol.51, pp.2, 2013, https://doi.org/10.7852/jses.2013.51.2.191
  3. Cloning of the posterior silk glands specific-expressed gene of silkworm vol.53, pp.1, 2015, https://doi.org/10.7852/jses.2015.53.1.44
  4. Comparison of transcriptome analysis between silk gland of B. mori and B. mandarina using next generation sequencing vol.38, pp.3, 2016, https://doi.org/10.1007/s13258-015-0361-7