DOI QR코드

DOI QR Code

F-actin cytoskeleton이 Jurkat T 림파구의 microvilli 형성에 미치는 영향

Involvement of F-Actin Cytoskeleton for Microvilli Formation of Jurkat T Lymphocyte

  • 이재설 (동의대학교 바이오물질제어학과) ;
  • 김해영 (단국대학교 나노의과학대학) ;
  • 손기애 (동의대학교 생명공학과) ;
  • 김지은 (동의대학교 생명공학과) ;
  • 문경미 (동의대학교 바이오물질제어학과) ;
  • 김광현 (동의대학교 생명응용학과) ;
  • 최은봉 (동의대학교 생명공학과) ;
  • 이종환 (동의대학교 생명공학과)
  • Lee, Jae-Seol (Department of Biomaterial control, Dong Eui University) ;
  • Kim, Hae-Young (Department of Nano Medical Science, Dankook Unversity) ;
  • Son, Gi-Ae (Department of Biotechnology & Bioengineering, College of Engineering, Dong Eui University) ;
  • Kim, Ji-Eun (Department of Biotechnology & Bioengineering, College of Engineering, Dong Eui University) ;
  • Moon, Kyoung-Mi (Department of Biomaterial control, Dong Eui University) ;
  • Kim, Kwang-Hyeon (Department of Life Science & Biotechnology, College of Life Science, Dong Eui University) ;
  • Choi, Woo-Bong (Department of Biotechnology & Bioengineering, College of Engineering, Dong Eui University) ;
  • Lee, Jong-Hwan (Department of Biotechnology & Bioengineering, College of Engineering, Dong Eui University)
  • 투고 : 2011.06.29
  • 심사 : 2011.10.06
  • 발행 : 2011.10.31

초록

면역세포는 외부 병원체 감염, 자연적 순환에 대하여 형태변화를 수반한다. T세포는 염증, 면역 감시, 이동, 그리고 혈관통과를 위해 uropod, filopodia, lamellipodia, 및 microvilli를 생산한다. 짧고 손가락 처럼 생긴 microvilli는 순환하고 있는 포유동물 면역세포 표면을 덮고 있다. 단핵세포와 호중구의 세포표면은 많이 다른데 membrane ruffle을 함유하고 있다. 본 연구는, T세포의 microvilli에 대하여 actin cytoskeleton과의 연관성에 대하여 탐구하였다. Actin 파괴자인 cytochalasin D 처리 후 SEM관찰을 통해서, Jurkat T세포의 microvilli를 보면 빠르게 사라지는 것을 알 수 있었다. 이와는 대조적으로 RhoA의 activator인 PMA는 LIMK와 cofilin 신호 전달을 통해서 microvilli 두께가 확장되는 것을 관찰 하였다. 또한, cytochalasin D 처리는 EL4 T세포의 극성을 사라지게 하는 것으로 보아 F-actin은 T세포의 극성 유지에도 영향을 미친다. 이상의 결과는 Actin cytoskeleton은 T세포에서 microvilli와 극성 유지에 관여하고 있는 것을 제시한다.

Morphological changes in immune cells occur due to pathogen infection and natural circulation. T cells produce uropod, filopodia, lamellipodia, and microvilli for inflammation, immunosurvelliance, migration, and diapedesis. Short finger-like microvilli cover the surfaces of circulating mammalian immune cells. The surface features of monocytes and neutrophils are quite different, containing membrane ruffles as their predominant structure. In this study, we present the involvement of actin cytoskeleton regarding T lymphocyte microvilli. From analysis of scanning electron micrographs, Jurkat T lymphocyte microvilli was observed to rapidly disassemble when exposed to the actin-sequestering molecule, cytochalasin D. In contrast to cytochalasin D treatment, we found that median microvillar thickness was enlarged on Jurkat T lymphocytes treated with PMA via Lin-11, Isl-1, Mec-3 Kinase (LIMK) and cofilin signaling. In addition, actin cytoskeleton was involved in polarity formation in EL4 T lymphocytes. These results suggest that microvilli formation or polarity of T lymphocytes are involved in actin cytoskeleton dynamics.

키워드

참고문헌

  1. Amano, T., K. Tanabe, T. Eto, S. Narumiya, and K. Mizuno. 2001. LIM-kinase 2 induces formation of stress fibres, focal adhesions and membrane blebs, dependent on its activation by Rho-associated kinase-catalysed phosphorylation at threonine-505. Biochem. J. 15, 149-159.
  2. Aspenstrom, P., A. Fransson, and J. Saras. 2004. Rho GTPases have diverse effects on the organization of the actin filament system. Biochem. J. 377, 327-337. https://doi.org/10.1042/BJ20031041
  3. Berlin, C., R. F. Bargatze, J. J. Campbell, U. H. von Andrian, M. C. Szabo, S. R. Hasslen, R. D. Nelson, E. L. Berg, S. L. Erlandsen, and E. C. Butcher. 1995. Alpha 4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell 80, 413-422. https://doi.org/10.1016/0092-8674(95)90491-3
  4. Brown, M. J., R. Nijhara, J. A. Hallam, M. Gignac, K. M. Yamada, S. L. Erlandsen, J. Delon, M. Kruhlak, and S. Shaw. 2003. Chemokine stimulation of human peripheral blood T lymph0ocytes induces rapid dephosphorylation of ERM proteins, which facilitates loss of microvilli and polarization. Blood 102, 3890-3899. https://doi.org/10.1182/blood-2002-12-3807
  5. Bonilha, V. L., M. E. Rayborn, I. Saotome, A. I. McClatchey, and J. G. Hollyfield. 2006. Microvilli defects in retinas of ezrin knockout mice. Exp. Eye Res. 82, 720-729. https://doi.org/10.1016/j.exer.2005.09.013
  6. Campbell, J. J. and E. C. Butcher. 2000. Chemokines in tissuespecific and microenvironment-specific lymphocyte homing. Curr. Opin. Immunol. 12, 336-341. https://doi.org/10.1016/S0952-7915(00)00096-0
  7. Cannon, J, L., P. D. Mody, K. M. Blaine, E. J. Chen, A. D. Nelson, L. J. Sayles, T. V. Moore, B. S. Clay, N. O. Dulin, R. A. Shilling, J. K. Burkhardt, and A. I. Sperling. 2011. CD43 interaction with ezrin-radixin-moesin (ERM) proteins regulates T-cell trafficking and CD43 phosphorylation. Mol. Biol. Cell 22, 954-963. https://doi.org/10.1091/mbc.E10-07-0586
  8. Elizabeth, S. H., J. G. Timothy, G. H. Ernest, and N. H. Henry. 2010. Assembly of Filopodia by the Formin FRL2 (FMNL3). Cytoskeleton 67, 755-772. https://doi.org/10.1002/cm.20485
  9. Faix, J., D. Breitsprecher, T. E. Stradal, and K. Rottner. 2009. Filopodia: complex models for simple rods. Int. J. Biochem. Cell Biol. 41, 1656-1664. https://doi.org/10.1016/j.biocel.2009.02.012
  10. Jean-Mairet, R. M., C. López-Menéndez, L. Sánchez-Ruiloba, S. Sacristan, M. Rodriguez-Martinez, L. Riol-Blanco, P. Sanchez-Mateos, F. Sanchez-Madrid, J. L. Rodriguez-Fernandez, M. R. Campanero, and T. Iglesias. 2011. The neuronal protein Kidins220/ARMS associates with ICAM-3 and other uropod components and regulates T-cell motility. Eur. J. Immunol. 41, 1035-1046. https://doi.org/10.1002/eji.201040513
  11. Nijhara, R., P. B. van Hennik, M. L. Gignac, M. J. Kruhlak, P. L. Hordijk, J. Delon, and S. Shaw. 2004. Rac1 mediates collapse of microvilli on chemokine-activated T lymphocytes. J. Immunol. 173, 4985-4993. https://doi.org/10.4049/jimmunol.173.8.4985
  12. Oh, J. Y., H. J. Seo, J. S. Lee, H. Y. Kim, K. M. Moon, W. B. Choi, B. W. Kim, and J. H. Lee. 2010. Involvement of Small GTPase RhoA for Microvilli Formation in Polartiy T Cell and Non-polarity T Cell. Cancer Prevention Research 15, 277-284.
  13. Pavalko, F. M., D. M. Walker, L. Graham, M. Goheen, C. M. Doerschuk, and G. S. Kansas. 1995. The cytoplasmic domain of L-selectin interacts with cytoskeletal proteins via alpha-actinin: receptor positioning in microvilli does not require interaction with alphaactinin. J. Cell Biol. 129, 1155-1164. https://doi.org/10.1083/jcb.129.4.1155
  14. Polliack, A. 1981. The contribution of scanning electron microscopy in haematology: its role in defining leucocyte and erythrocyte disorders. J. Microscopy 123, 177-187. https://doi.org/10.1111/j.1365-2818.1981.tb01293.x
  15. Pritchard, C. A., L. Hayes, L. Wojnowski, A. Zimmer, R. M. Marais, and J. C. Norman. 2004. B-Raf acts via the ROCKII/LIMK/cofilin pathway to maintain actin stress fibers in fibroblasts. Mol. Cell Biol. 24, 5937-5952. https://doi.org/10.1128/MCB.24.13.5937-5952.2004
  16. Sonja, M, Z, Jinyi, N. D. Susan, L. Stefan, F. K. Wilhelm, A. Siminovitch, and N. H. Henry. 2004. Lymphocyte microvilli are dynamic, actin-dependent structures that do not require Wiskott-Aldrich syndrome protein (WASp) for their morphology. Blood 104, 1396-1403. https://doi.org/10.1182/blood-2004-02-0437
  17. Spiering, D. and L. Hodgson. 2011. Dynamics of the Rho-family small GTPases in actin regulation and motility. Cell Adh. Migr. 5, 170-180. https://doi.org/10.4161/cam.5.2.14403
  18. von Andrian, U. H., S. R. Hasslen, R. D. Nelson, S. L. Erlandsen, and E. C. Butcher. 1995. A central role for microvillous receptor presentation in leukocyte adhesion under flow. Cell 82, 989-999. https://doi.org/10.1016/0092-8674(95)90278-3
  19. Svitkina, T. M., E. A. Bulanova, O. Y. Chaga, D. M. Vignjevic, S. Kojima, J. M. Vasiliev, and G. G. Borisy. 2003. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 160, 409-421. https://doi.org/10.1083/jcb.200210174
  20. Yamane, J., H. Ohnishi, H, Sasaki, H. Narimatsu, H. Ohgushi, and K. Tachibana. 2011. Formation of microvilli and phosphorylation of ERM family proteins by CD43, a potent inhibitor for cell adhesion: cell detachment is a potential cue for ERM phosphorylation and organization of cell morphology. Cell Adh. Migr. 5, 119-132. https://doi.org/10.4161/cam.5.2.13908