DOI QR코드

DOI QR Code

Effects of Insulin-Like Growth Factor-I on Expression of Suppressor of Cytokine Signaling-3 in C2C12 Myotube

C2C12 myotube에서 insulin-like growth factor-I이 SOCS-3 유전자 발현에 미치는 영향

  • Kim, Hye-Jin (Department of Exercise Science, College of Health Sciences, Ewha Womans University) ;
  • Lee, Won-Jun (Department of Exercise Science, College of Health Sciences, Ewha Womans University)
  • 김혜진 (이화여자대학교 건강과학대학 체육과학과) ;
  • 이원준 (이화여자대학교 건강과학대학 체육과학과)
  • Received : 2011.05.31
  • Accepted : 2011.09.23
  • Published : 2011.10.31

Abstract

It is well known that both insulin-like growth factor-I and suppressor of cytokine signaling-3 (SOCS-3) are known to modulate various aspects of physiology in skeletal muscle cells. Furthermore, although SOCS-3 expression is related to insulin resistance in non-skeletal muscle cells and is known to interact with insulin-like growth factor-I receptor, the effect of IGF-I on SOCS-3 gene expression in skeletal muscle cells is presently unknown. C2C12 myotubes were treated with different concentrations (0-200 ng/ml) of IGF-I or for various periods of time (3-72 hr). Immunofluorescent staining image revealed that IGF-I induced SOCS-3 protein expression in a dose-dependent manner. Western blot data also showed that SOCS-3 proteins were induced by IGF-I (200 ng/ml) in C2C12 myotubes in a time-dependent manner. The level of SOCS-3 mRNA was also significantly increased after 3hr of IGF-I (10-100 ng/ml) treatment. However, the levels of SOCS-3 mRNA were significantly decreased after 24 and 48 hr of IGF-I (10-100 ng/ml) treatment compared to the control. In conclusion, SOCS-3 protein is induced by IGF-I treatment in C2C12 skeletal muscle cells and this induction is regulated pretranslationally. The modulating effect of IGF-I on SOCS-3 expression may be an important regulator of gene expression in skeletal muscle cells.

SOCS-3와 IGF-I은 근육의 분화 과정 및 근비대 기전에 있어 매우 중요한 조절자 역할을 하는 유전자 및 성장인 자이며, 최근 골격근에서 IGF-I과 SOCS-3 유전자의 상호작용에 관한 연구의 필요성이 제기되고 있다. 본 연구에서는 C2C12 myotube에서 IGF-I이 SOCS-3 유전자 발현에 미치는 영향에 대해 알아보기 위해 4일간 분화시킨 C2C12 myotube에 IGF-I을 다양한 농도(0-200 ng/ml) 및 시간(3-72 시간)에 따라 처리하였다. 그 결과 IGF-I이 SOCS-3 유전자의 단백질 발현을 시간 의존적으로 유의하게 증가시켰으며, 3 시간에서 mRNA 발현을 증가시키고, 시간이 지남에 따라 긴 시간에서는 농도 의존적으로 발현이 감소하였음을 알 수 있었다. 또한 면역형광 염색을 통해 IGF-I이 myotube에서 SOCS-3의 단백질을 발현 시켰음을 뚜렷하게 관찰 할 수 있었다. 위 결과들을 바탕으로 본 연구에서는 IGF-I의 처리가 분화된 근육 세포인 C2C12 myotube에서 SOCS-3 유전자 발현에 유의한 영향을 미쳤음을 증명하였다. 이러한 결과는 선행연구에서 보고한 운동이 SOCS-3 유전자 발현을 증가시킴에 있어서 IGF-I이 중추적인 역할을 한 것으로 생각된다. 그러나 IGF-I에 의한 SOCS-3 유전자 발현 조절 기전에 있어 관련 신호 전달체계 및 골격근 관련 유전자 발현에 미치는 영향에 관한 연구는 보다 더 이루어져야 할 것이라 사료된다.

Keywords

References

  1. Alexander, W. S. and D. J. Hilton. 2004. The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annu. Rev. Immunol. 22, 503-529. https://doi.org/10.1146/annurev.immunol.22.091003.090312
  2. Auernhammer, C. J., C. Bousquet, A. Chensnokova, and S. Meled. 2000. SOCS proteins: modulators of neuroimmunoendocrine functions. Impact on corticotroph LIF signaling. Ann. N. Y. Acad. Sci. 917, 658-664.
  3. Benedetti, F., T. Alonzi, A. Moretta, D. Lazzaro, P. Costa, V. Poli, A. Martini, G. Ciliberto, and E. Fattori. 1997. Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor-I. A model for stunted growth in children with chronic inflammation. J. Clin. Invest. 99, 643-650. https://doi.org/10.1172/JCI119207
  4. Bodell, P. W., E. Kodesh, F. Haddad, F. P. Zaldivar, D. M. Cooper, and G. R. Adams. 2009. Skeletal muscle growth in young rats is inhibited by chronic exposure to IL-6 but preserved by concurrent voluntary endurance exercise. J. Appl. Physiol. 106, 443-453.
  5. Cacalano, N. A., D. Sanden, and J. A. Johnston. 2001. Tyrosine-phosphorylated SOCS-3 inhibits STAT activation but binds to p120 RasGAP and activates Ras. Nat. Cell Biol. 3, 460-465. https://doi.org/10.1038/35074525
  6. Dey, B. R., R. W. Furlanetto, and P. Nissley. 2000. Suppressor of cytokine signaling (SOCS)-3 protein interacts with the insulin-like growth factor-I receptor. Biochem. Biophys. Res. Commun. 278, 38-43. https://doi.org/10.1006/bbrc.2000.3762
  7. Diao, Y., X. Whang, and Z. Wu. 2009. SOCS1, SOCS3, and PIAS1 promote myogenic differentiation by inhibiting the leukemia inhibitory factor-induced JAK1/STAT1/STAT3 pathway. Mol. Cell Biol. 29, 5084-5093. https://doi.org/10.1128/MCB.00267-09
  8. Emanuelli, B., P. Peraldi, C. Filloux, D. Sawaka-Verhelle, D. J. Hilton, and E. Van Obberghen. 2000. SOCS-3 is an insulin- induced negative regulator of insulin signaling. J. Biol. Chem. 275, 15985-15991. https://doi.org/10.1074/jbc.275.21.15985
  9. Emanuelli, B., P. Peraldi, C. Filloux, C. Chavey, K. Freidinger, D. J. Hilton, G. S. Hotamisligil, and E. Van Obberghen. 2001. SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice. J. Biol. Chem. 276, 47944-47949.
  10. Florini, J. R., D. Z. Ewton, and S. A. Coolican. 1996. Growth hormone and the insulin-like growth factor system in myogenesis. Endocr. Rev. 16, 481-517.
  11. Galvin, C. D., O. Hardiman, and C. M. Nolan. 2003. IGF-I receptor mediates differentiation of primary cultures of mouse skeletal myoblasts. Mol. Cell Endocrinol. 200, 19-29. https://doi.org/10.1016/S0303-7207(02)00420-3
  12. Glass, D. J. 2005. Skeletal muscle hypertrophy and atrophy signaling pathways. Int. J. Biochem. Cell Biol. 37, 1974-1984. https://doi.org/10.1016/j.biocel.2005.04.018
  13. Haddad, F., F. Zaldivar, D. M. Cooper, and G. R. Adams. 2005. IL-6-induced skeletal muscle atrophy. J. Appl. Physiol. 98, 911-917.
  14. Hansen, J. A., K. Lindberg, D. J. Hilton, J. H. Nielsen, and N. Billestrup. 1999. Mechanism of inhibition of growth hormone receptor signaling by suppressor of cytokine signaling proteins. Mol. Endocrinol. 13, 1832-1843. https://doi.org/10.1210/me.13.11.1832
  15. Hawley, J. A. and S. J. Lessard. 2008. Exercise training-induced improvements in insulin action. Acta. Physiologica 192, 127-135.
  16. Holloszy, J. O. 2005. Exercise-induced increase in muscle insulin sensitivity. J. Appl. Physiol. 99, 338-343. https://doi.org/10.1152/japplphysiol.00123.2005
  17. Jandziszak, K., C. Suarez, E. Wasserman, R. Clark, B. Baker, F. Liu, R. Hintz, P. Saenger, and L. P Brion. 1998. Disturbances of growth hormone-insulin-like growth factor axis and response to growth hormone in acidosis. Am. J. Physiol. 275, R120-R128.
  18. Jennische, E. and H. A. Hansson. 1987. Regenerating skeletal muscle cells express insulin-like growth factor I. Acta. Physiol. Scand. 130, 327-332. https://doi.org/10.1111/j.1748-1716.1987.tb08144.x
  19. Kakisis, J. D., C. D. Liapis, and B. E. Sumpio. 2004. Effects of cyclic strain on vascular cells. Endothelium. 11, 17-28. https://doi.org/10.1080/10623320490432452
  20. Kim, C. H., J. H. Youn, J. Y. Park, S. K. Hong, K. S. Park, S. W. Park, K. I. Suh, and K. U. Lee. 2000. Effects of high-fat diet and exercise training on intracellular glucose metabolism in rats. Am. J. Physiol. 278, E977-E984.
  21. Kraegen, E. W., D. E. James, A. B. Jenkins, D. J. Chisholm, and L. H. Storlien. 1989. A potent in vivo effect of ciglitazone on muscle insulin resistance induced by high fat feeding of rats. Metabolism 38, 1089-1093. https://doi.org/10.1016/0026-0495(89)90045-0
  22. Lebrun, P. and E. Van Obberghen. 2008. SOCS proteins causing trouble in insulin action. Acta. Physiologica 192, 29-36.
  23. McLellan, A. S., T. Kealey, and K. Langlands. 2006. An E box in the exon 1 promoter regulates insulin-like growth factor-I expression in differentiating muscle cells. Am. J. Physiol. 291, C300-C307. https://doi.org/10.1152/ajpcell.00345.2005
  24. Nielsen, C., L. C. Gormsen, N. Jessen, S. B. Pedersen, N. Moller, S. Lund, and J. O. Jorgensen. 2008. Growth hormone signaling in vivo in human muscle and adipose tissue: impact of insulin, substrate background, and growth hormone receptor blockade. J. Clin. Endocrinol. Metab. 93, 2842-2850. https://doi.org/10.1210/jc.2007-2414
  25. Park, P. and P. Cohen. 2005. Insulin-like growth factor I (IGF-I) measurements in growth hormone (GH) therapy of idiopathic short stature (ISS). Growth Horm. IGF Res. 15, S13-S20. https://doi.org/10.1016/j.ghir.2005.06.011
  26. Rieusset, J., K. Bouzakri, E. Chevillotte, N. Ricard, D. Jacquet, J. P. Bastard, M. Laville, and H. Vidal. 2004. Suppressor of cytokine signaling 3 expression and insulin resistance in skeletal muscle of obese and type 2 diabetic patients. Diabetes 53, 2232-2241. https://doi.org/10.2337/diabetes.53.9.2232
  27. Rui, L., M. Yuan, D. Frantz, S. Shoelson, and M. F. White. 2002. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J. Biol. Chem. 277, 42394-42399. https://doi.org/10.1074/jbc.C200444200
  28. Sadowski, C. L., T. S. Choi, M. Le, T. T. Wheeler, L. H. Wang, and H. B. Sadowski. 2001. Insulin Induction of SOCS-2 and SOCS-3 mRNA expression in C2C12 Skeletal Muscle Cells Is Mediated by Stat5*. J. Biol. Chem. 276, 20703-20710. https://doi.org/10.1074/jbc.M101014200
  29. Shi, H., I. Tzameli, C. Bjorbaek, and J. S. Flier. 2004. Suppressor of cytokine signaling 3 is a physiological regulator of adipocyte insulin signaling. J. Biol. Chem. 279, 34733-34740. https://doi.org/10.1074/jbc.M403886200
  30. Spangenburg, E. E. 2005. SOCS-3 induces myoblast differentiation. J. Biol. Chem. 280, 10749-10758. https://doi.org/10.1074/jbc.M410604200
  31. Spangenburg, E. E. 2006. Exercise increases SOCS-3 expression in rat skeletal muscle: potential relationship to IL-6 expression. J. Physiol. 572, 839-848. https://doi.org/10.1113/jphysiol.2005.104315
  32. Steppan, C. M., J. Wang, E. L. Whiteman, M. J. Birnbaum, and M. A. Lazer. 2005. Activation of SOCS-3 by resistin. Mol. Cell Biol. 25, 1569-1575. https://doi.org/10.1128/MCB.25.4.1569-1575.2005
  33. Takeda, K. and S. Akira. 2000. STAT family of transcription factors in cytokine-mediated biological responses. Cytokine. Growth. Factor Rev. 11, 199-207. https://doi.org/10.1016/S1359-6101(00)00005-8
  34. Tollet-Egnell, P., A. Flores-Morales., A. Stavréus-Evers., L. Sahlin, and G. Norstedt. 1999. Growth hormone regulation of SOCS-2, SOCS-3, and CIS messenger ribonucleic acid expression in the rat. Endocrinology 140, 3693-3704. https://doi.org/10.1210/en.140.8.3693
  35. Trenerry, M. K., K. A. Carey, A. C. Ward, and D. Cameron-Smith. 2007. STAT3 signaling is activated in human skeletal muscle following acute resistance exercise. J. Appl. Physiol. 102, 1483-1489.
  36. Ueki, K., T. Kondo, and C. R. Kahn. 2004. Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol. Cell Biol. 24, 5434-5446. https://doi.org/10.1128/MCB.24.12.5434-5446.2004
  37. Ueki, K., T. Kondo, Y. H. Tseng, and C. R. Kahn. 2004. Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse. Proc. Natl. Acad. Sci. USA 101, 10422-10427. https://doi.org/10.1073/pnas.0402511101
  38. Wallenius, V., K. Wallenius, B. Ahrén, M. Rudling, H. Carlsten, S. L. Dickson, C. Ohlsson, and J. O. Jansson. 2002. Interleukin-6-deficient mice develop mature-onset obesity. Nat. Med. 8, 75-79. https://doi.org/10.1038/nm0102-75
  39. Weigert, C., A. M. Hennige, K. Brodbeck, H. U. Häring, and E. D. Schleicher. 2005. Interleukin-6 acts as insulin sensitizer on glycogen synthesis in human skeletal muscle cells by phosphorylation of Ser473 of Akt. Am. J. Physiol. 289, E251-257.
  40. Yadav, A., A. Kalita, S. Dhillon, and K. Banerjee. 2005. JAK/STAT3 pathway is involved in survival of neurons in response to insulin-like growth factor and negatively regulated by suppressor of cytokine signaling-3. J. Biol. Chem. 280, 31830-31840. https://doi.org/10.1074/jbc.M501316200
  41. Yaspelkis, B. B. III., I. A. Kvasha, and T. Y. Figueroa. 2009. High-fat feeding increases insulin receptor and IRS-1 coimmunoprecipitation with SOCS-3, IKKalpha/beta phosphorylation and decreases PI-3 kinase activity in muscle. Am. J. Physiol. 296, R1709-R1715.