DOI QR코드

DOI QR Code

미세조류 유래 astaxanthin의 항염증 및 항산화 효과

Anti-Inflammatory and Antioxidant Effect of Astaxanthin Derived from Microalgae

  • 곽태원 (부산대학교 한의학전문대학원) ;
  • 차지영 (부산대학교 한의학전문대학원) ;
  • 이철원 (부산대학교 해양생물기술연구소) ;
  • 김영민 ((주)바이오포트코리아) ;
  • 유병홍 ((주)바이오포트코리아) ;
  • 김성구 ((주)바이오포트코리아) ;
  • 김종명 (부경대학교 수산과학대학) ;
  • 박성하 (부산대학교 한의학전문대학원) ;
  • 안원근 (부산대학교 한의학전문대학원)
  • 투고 : 2011.05.31
  • 심사 : 2011.07.08
  • 발행 : 2011.10.31

초록

Astaxanthin (ATX)은 다양한 생명체에서 생성되는 카로티노이드 색소이다. 본 연구에서는 ATX가 RAW264.7 cell에서 LPS에 의한 inducible nitric oxide synthase (iNOS), nitric oxide (NO), 염증성 사이토카인, nuclear factor-kappa B (NF-${\kappa}B$)와 reactive oxygen species (ROS)의 생성을 억제 시키는 지 또한, superoxide radical 소거능이 있는 지를 조사하였다. iNOS와 NF-${\kappa}B$는 immunoblot analysis로, interleukin (IL)-6와 tumour necrosis factor-${\alpha}$ (TNF-${\alpha}$)는 ELISA 법으로 분석하였다. NO 양은 nitrite의 양을 측정하였고, ROS는 2',7'-dichlorodihydrofluorescin diacetate (DCFH-DA) 법으로 superoxide radical 소거능은 superoxide radical scavenging activity assay로 검증하였다. 100 ${\mu}M$의 ATX 농도에서 LPS로 유도된 NO, IL-6 및 TNF-${\alpha}$ 같은 염증성 사이토카인의 생성 뿐만 아니라 iNOS 및 NF-${\kappa}B$의 발현도 억제되었다. 특히, IL-6 및 TNF-${\alpha}$ 생성에 있어 ATX의 최대 억제율은 각각 65.2% 및 21.2% 이었으며 LPS로 유도된 NF-${\kappa}B$의 전사활성을 억제하였다. 이러한 현상은 세포질에서 핵으로 NF-${\kappa}B$의 전위를 억제하는 것과 관련이 있다. 또한, 25-100 ${\mu}M$의 ATX 농도에서 세포 내 ROS 생성을 억제하였으며, 5 mg/ml 농도의 ATX는 동일농도의 ${\alpha}$-tocopherol에 비해 superoxide radical 소거능이 1.33배 높았다. 이러한 결과들은 ATX가 대식세포에서 ROS 생성 및 NF-${\kappa}B$ 활성을 저해하므로 iNOS의 발현, NO 및 염증성 사이토카인의 생성을 억제하며, 또한 우수한 superoxide radical 소거능을 보유한다는 것을 나타내었다. 결론적으로, ATX가 항염증제 및 항산화제로서 유용하게 사용될 수 있을 것으로 사료된다.

Astaxanthin (ATX) is a red-orange carotenoid pigment that occurs naturally in a wide variety of living organisms. In this study we investigated the inhibitory effects of ATX on the induction of inducible nitric oxide synthase (iNOS), nitric oxide (NO), proinflammatory cytokines, nuclear factor-kappa B(NF-${\kappa}B$) and reactive oxygen species (ROS) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. In addition, we tested the superoxide radical scavenging activity of ATX by scavenging assay. iNOS and NF-${\kappa}B$ expressions were determined by immunoblot analysis. Interleukin (IL)-6 and tumour necrosis factor-${\alpha}$ (TNF-${\alpha}$) were assayed by ELISA. NO production was monitored by measuring the amount of nitrite. ROS was examined by using the 2', 7'-Dichlorodihydrofluorescin diacetate (DCFH-DA) method. At a concentration of 100 ${\mu}M$, ATX inhibited the expression level of LPS-induced NF-${\kappa}B$, as well as the production of LPS-induced NO and proinflammatory cytokines (IL-6 and TNF-${\alpha}$), by suppressing iNOS expression. In particular, the maximal inhibition rate of IL-6 and TNF-${\alpha}$ production by ATX (100 ${\mu}M$) was 65.2----- and 21.2-----, respectively. In addition, ATX inhibited the LPS-induced transcriptional activity of NF-${\kappa}B$, and this was associated with suppressing the translocations of NF-${\kappa}B$ from the cytosol to the nucleus. Moreover, at various concentrations (25-100 ${\mu}M$), ATX inhibited the intracellular level of ROS. At a concentration of 5 mg/ml, the superoxide radical scavenging activity of ATX was 1.33 times higher than ${\alpha}$-tocopherol of the same concentration. These results showed that ATX inhibited the expression of iNOS and the production of NO and proinflammatory cytokines resulting from ROS production and NF-${\kappa}B$ activation in macrophages. Furthermore, ATX was found to be more effective in superoxide radical scavenging activities compared to ${\alpha}$-tocopherol. These findings are expected to strengthen the position of ATX as anti-inflammatory medicine and antioxidant.

키워드

참고문헌

  1. Aggarwal, B. B. 2004. Nuclear factor-$\kappa$B: The enemy within. Cancer Cell 6, 203-208. https://doi.org/10.1016/j.ccr.2004.09.003
  2. Albina, J. L. and J. S. Reichner. 1998. Role of nitric oxide mediation of macrophage cytotoxicity and apoptosis. Cancer Metast Rev. 17, 39-53. https://doi.org/10.1023/A:1005904704618
  3. Bendich, A. 1991. Non vitamin a activity of carotenoids: immuno enhancement. Food Sci. Technol. Res. 2, 127-130. https://doi.org/10.1016/0924-2244(91)90648-3
  4. Bennedsen, M., X. Wang, R. Willen, T. Wadstrom, and L. P. Andersen. 1999. Treatment of H. pylori infected mice with antioxidant astaxanthin reduces gastric inflammation, bacterial load and modulates cytokine release by splenocytes. Immunol. Lett. 70, 185-189.
  5. Berg, J., H. Fellier, T. Christoph, J. Grarup, and D. Stimmeder. 1999. The analgesic NSAID lornoxicam inhibits cyclooxygenase (COX)-1/-2, inducible nitric oxide synthase (iNOS), and the formation of interleukin (IL)-6 in vitro. Inflamm. Res. 48, 369-379. https://doi.org/10.1007/s000110050474
  6. Beutler, B. and A. Cerami. 1989. The biology of cachectin/TNF-$\alpha$ primary mediator of the host response. Annu. Rev. Immunol. 7, 625-655. https://doi.org/10.1146/annurev.iy.07.040189.003205
  7. Delgado, A. V., A. T. McManus, and J. P. Chambers. 2003. Production of Tumor Necrosis Factor-alpha, Interleukin 1-beta, Interleukin 2, and Interleukin 6 by rat leukocyte subpopulations after exposure to Substance P. Neuropeptides 37, 355-361. https://doi.org/10.1016/j.npep.2003.09.005
  8. Fridovich, I. 1997. Superoxide anion radical, superoxide dismutases, and related matters. J. Biol. Chem. 272, 18515-18517. https://doi.org/10.1074/jbc.272.30.18515
  9. Ghosh, S. and M. Ksarin. 2002. Missing pieces in the NF-$\kappa$B puzzle. Cell 109, S81-S96. https://doi.org/10.1016/S0092-8674(02)00703-1
  10. Guerin, M., M. E. Huntley, and M. Olaizola. 2003. Haematococcusastaxanthin: applications for human health and nutrition. Trends Biotechnol. 21, 210-216. https://doi.org/10.1016/S0167-7799(03)00078-7
  11. Guslandi, M. 1998. Nitric oxide and inflammatory bowel diseases. Eur. J. Clin. Invest. 28, 904-907. https://doi.org/10.1046/j.1365-2362.1998.00377.x
  12. Guzik, T. J. and K. M. Channon. 2005. Measurement of vascular reactive oxygen species production by chemiluminescence. Method Mol. Med. 108, 73-89.
  13. Kilbourn, R. G. and P. Belloni. 1990. Endothelial cell production of nitric oxide in response to interferon-γ in combination with tumor necrosis factor, interleukin-1, or endotoxin. J. Natl. Cancer Inst. 82, 772-776. https://doi.org/10.1093/jnci/82.9.772
  14. Kim, S. G., H. J. Kim, S. H. Choi, and J. Y. Ryu. 2000. Inhibition of lipopolysaccharide-induced I-kB degradation and tumor necrosis factor-expression by dimethyl-4, 40-dimethoxy-5, 6, 50, 60-dimethylene dioxybiphenyl-2,20-dicarboxylate (DDB): minor role in hepatic detoxifying enzyme expression. Liver 20, 319-329. https://doi.org/10.1034/j.1600-0676.2000.020004319.x
  15. Kim, S. J., H. J. Jeong, P. D. Moon, K. M. Lee, H. B. Lee, H. J. Jung, S. K. Jung, H. K. Rhee, D. C. Yang, S. H. Hong, and H. M. Kim. 2005. Anti-inflammatoryactivity of gumiganghwaltang through the inhibition of nuclear factor-kappa B activation in peritoneal macrophages. Biol. Pharm. Bull. 28, 233-237. https://doi.org/10.1248/bpb.28.233
  16. Kim, Y. W., R. J. Zhao, S. J. Park, J. R. Lee, I. J. Cho, C. H. Yang, S. G. Kim, and S. C. Kim. 2008. Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-$\kappa$B-dependent iNOS and proinflammatory cytokines production. Brit. J. Pharmacol. 154, 165-173. https://doi.org/10.1038/bjp.2008.79
  17. Krinsky, N. I. 1989. Antioxidant functions of carotenoids. Free Radical Bio. Med. 7, 617-635. https://doi.org/10.1016/0891-5849(89)90143-3
  18. Kurashige, M., E. Okimasu, M. Inoue, and K. Utsumi. 1990. Inhibition of oxidative injury of biological membranes by astaxanthin. Physiol. Chem. Phys. Med. NMR. 22, 27-38.
  19. Kurihara, H. 2002. Contribution of the antioxidative property of astaxanthin to its protective effect on the promotion of cancermetastasis in mice treated with restraint stress. Life Sci. 70, 2509-2520. https://doi.org/10.1016/S0024-3205(02)01522-9
  20. Lappas, M., M. Permezel, H. M. Georgiou, and G. E. Rice. 2002. Nuclear factor kappa B regulation of proinflammatory cytokines in human gestational tissues in vitro. Biol. Reproduct. 67, 668-673. https://doi.org/10.1095/biolreprod67.2.668
  21. Lee, A. K., S. H. Sung, Y. C. Kim, and S. G. Kim. 2003. Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-alpha and COX-2 expression by sauchinone effects on I-kappa B alpha phosphorylation, C/EBP and AP-1 activation. Brit. J. Pharmacol. 139, 11-20. https://doi.org/10.1038/sj.bjp.0705231
  22. Lee, S. J., S. K. Bai, K. S. Lee, S. Namkoong, H. J. Na, K. S. Ha, J. A. Han, S. V. Yim, K. Chang, Y. G. Kwon, S. K. Lee, and Y. M. Kim. 2003. Astaxanthin inhibits nitric oxide production and inflammatory gene expression by suppressing I$\kappa$B kinase-dependent NF-$\kappa$B activation. Mol. Cells 16, 97-105.
  23. Li, Q. and I. M. Verma. 2002. NF-$\kappa$B regulation in the immune system. Nat. Rev. Immunol. 2, 725-734. https://doi.org/10.1038/nri910
  24. Ma, Q. and K. Kinneer. 2002. Chemo-protection by phenolic antioxidants.Inhibition of tumor necrosis factor-$\alpha$ induction in macrophages. J. Biol. Chem. 277, 2477-2484. https://doi.org/10.1074/jbc.M106685200
  25. Miesel, R., M. P. Murphy, and H. Kroeger. 1996. Enhanced mitochondrial radical production in patients which rheumatoid arthritis correlates with elevated levels of tumor necrosis factor alpha in plasma. Free Radical Res. 25, 161-9. https://doi.org/10.3109/10715769609149921
  26. Naguib, Y. M. A. 2000. Antioxidant activities of astaxanthin and related carotenoids. J. Agr. Food Chem. 48, 1150-1154. https://doi.org/10.1021/jf991106k
  27. Palozza, P. and N. I. Krinsky. 1992. Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Arch Biochem. Biophys. 297, 291-295. https://doi.org/10.1016/0003-9861(92)90675-M
  28. Papas, A. M. 1999. Antioxidant Status, Diet, Nutrition, and Health, CRC Press.
  29. Rachmilewitz, D., J. S. Stamler, F. Karmeli, M. E. Mullins, D. J. Singel, J. Loscalzo, R. J. Xavier, and D. K. Podolsky. 1993. Peroxynitrite-induced rat colitis- a new model of colonic inflammation. Gastroenterology 105, 1681-1688.
  30. Sanlioglu, S., C. M. Williams, L. Samavati, N. S. Butler, G. Wang, P. B. McCray, T. C. Jr.Ritchie, G. W. Hunninghake, E. Zandi, and J. F. Engelhardt. 2001. Lipopolysaccharide induces Rac1-dependent reactive oxygen species formation and coordinates tumor necrosis factor-$\alpha$ secretion through IKK regulation of NF-$\kappa$B. J. Biol. Chem. 276, 30188-30198. https://doi.org/10.1074/jbc.M102061200
  31. Shimidzu, N., M. Goto, and W. Miki. 1996. Carotenoids as singlet oxygen quenchers in marine organisms. Fish. Sci. 62, 134-137. https://doi.org/10.2331/suisan.62.134
  32. Surh, Y. J., K. S. Chun, H. H. Cha, S. S. Han, Y. S. Keum, K. K. Park, and S. S. Lee. 2001.Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-$\kappa$B activation. Mutat. Res. 480-481, 243-268. https://doi.org/10.1016/S0027-5107(01)00183-X
  33. Tome, L. A., L. Yu, I. de Castro, S. B. Campos, and A. C. Seguro. 1999. Beneficial and harmful effects of L-arginine on renal ischaemia. Nephrol. Dial. Transpl. 14, 1139-1145. https://doi.org/10.1093/ndt/14.5.1139
  34. Yonouchi, J. 1993. Astaxanthin enhances in vitro antibody production to T-dependent antigens without facilitating polyclonal B-cell activation. Nutr. Cancer 19, 269-280. https://doi.org/10.1080/01635589309514258

피인용 문헌

  1. Evaluation of Antioxidant and Anti-Inflammatory Activities of Ascidian Tunic Carotenoids As a Source of Color Cosmetics vol.28, pp.1, 2013, https://doi.org/10.7841/ksbbj.2013.28.1.36
  2. Antioxidant and Nitric Oxide Inhibitory Activities of Pigments from Chionoecetes japonicas Rathbun vol.29, pp.5, 2014, https://doi.org/10.7841/ksbbj.2014.29.5.343
  3. Effects of astaxanthin on dinitrofluorobenzene-induced contact dermatitis in mice vol.12, pp.3, 2015, https://doi.org/10.3892/mmr.2015.3892