DOI QR코드

DOI QR Code

육계에서 구멍갈파래의 항산화 및 면역조절 효과

Antioxidant and Immunomodulatory Effects of Ulva pertusa kjellman on Broiler Chickens

  • 홍준기 (농촌진흥청 국립축산과학원) ;
  • 봉미희 (농촌진흥청 국립축산과학원) ;
  • 박준철 (농촌진흥청 국립축산과학원) ;
  • 문홍길 (농촌진흥청 국립축산과학원) ;
  • 김동욱 (농촌진흥청 국립축산과학원) ;
  • 이상철 (농촌진흥청 국립축산과학원) ;
  • 이준헌 (충남대학교 농업생명과학대학 동물자원생명과학과)
  • Hong, Joon-Ki (National Institute of Animal Science, R.D.A) ;
  • Bong, Mi-Hee (National Institute of Animal Science, R.D.A) ;
  • Park, Jun-Cheol (National Institute of Animal Science, R.D.A) ;
  • Moon, Hong-Kil (National Institute of Animal Science, R.D.A) ;
  • Kim, Dong-Wook (National Institute of Animal Science, R.D.A) ;
  • Lee, Sang-Cheul (National Institute of Animal Science, R.D.A) ;
  • Lee, Jun-Heon (Department of Animal Science and Biotechnology, College of Agriculture and Life Sciences, Chungnam National University)
  • 투고 : 2011.04.18
  • 심사 : 2011.10.10
  • 발행 : 2011.10.31

초록

본 연구는 구멍갈파래 급여가 육계 혈액 내 항산화, 면역조절 효과에 미치는 영향을 구명하기 위해 실시 하였으며, 이를 위해 LPS로 염증반응이 유도된 육계에서 혈액 SOD 유사 활성, immunoglobulin 농도 및 비장 조직 내 cytokine mRNA 발현을 조사하였다. 공시계로는 1일령 Ross종 육계수컷 96수를 선별하여, 육계전기(0~3주), 육계후기(3~5주)의 5주 동안 사양시험을 실시하였다. 처리당 24수(3수${\times}$8반복)씩 4처리구에 총 96수를 임의배치 하여 실시하였다. 시험구 배치는 무첨가구(Negative Control ; NC), 시판 면역증강제 첨가구(Positive Control ; PC, ${\beta}$-glucan 25 ppm), 구멍갈파래 분말 3% 첨가구(Ulva pertusa kjellman Powder ; Ulva P) 및 구멍갈파래 추출물 0.3% 첨가구(Ulva pertusa kjellman Extract ; Ulva E)로 배치하였다. 혈액 내 SOD 유사 활성을 분석한 결과 구멍갈파래 첨가구 (Ulva P, Ulva E)는 무첨가구와 면역제제 첨가구보다 높은 항산화 활성을 가지는 것으로 나타났다(P<0.05). immunoglobulin 농도에서 IgA와 IgG 농도는 처리구간의 차이가 나타나지 않았지만 IgM농도에서 구멍갈파래 추출물 처리구가 무첨가구에 비해 유의적으로 낮은 수준을 나타냈다(P<0.05). 이는 구멍갈파래 추출물이 LPS에 대한 면역자극을 조절하여 과잉면역반응을 억제한 것으로 사료된다. 비장 조직 내 cytokine mRNA 발현량을 조사한 결과 IL-1, IL-2 및 IL-6에서 처리구별 공통적인 차이를 나타내었는데 구멍갈파래 처리구(Ulva P, Ulva E)의 mRNA 발현 비율이 무첨가구와 면역제제 처리구에 비해 낮았으며, 구멍갈파래 처리 간 비교에서 구멍갈파래 추출물이 분말보다 더 낮았다(P<0.05). iNOS의 경우 구멍갈파래 분말 첨가구는 무첨가구와 유의적인 차이가 없었지만 구멍갈파래 추출물 첨가구는 모든 처리구보다 iNOS의 발현이 낮았다(P<0.05). 구멍갈파래 분말과 추출물은 LPS 주입에 의한 염증 관련 사이토카인 mRNA 발현을 억제하는 경향을 나타내며, 특히 구멍갈파래 추출물이 발현억제 효과가 더 높은 것으로 확인되었다(P<0.05). 본 연구 결과 육계에서 구멍갈파래 급여는 염증, 질병의 원인인 활성산소 제거에 효과가 있다고 사료된다. 특히 구멍갈파래 추출물은 혈액 내 IgM의 농도를 조절하여 외부항원에 대한 과잉면역반응을 억제하고 염증 관련 cytokine mRNA 발현을 억제하여 육계 면역조절에 긍적적인 영향을 미치는 것으로 사료된다.

This study was conducted to test the efficacy of Ulva pertusa kjellman as immunomodulators under lipopolysaccharide (LPS) challenge in broilers by investigating their effects on serum superoxide dismutase (SOD) like ability, immunoglobulin concentration, and splenic cytokine mRNA expression. A total of ninety six1-d-old male broiler chicks (Ross 308) were divided into 4 treatment groups with 8 replicates of 3 birds in each group. NC (negative control, no immune substances), PC (positive control, ${\beta}$-glucan 25 ppm), Ulva P (Ulva pertusa kjellman Powder 3%), and Ulva E (Extract form Ulva pertusa kjellman 0.3%) were added in feed with respective substance. Heparinized venous blood and spleens were collected from five birds per dietary treatment at 5 wk of age. The SOD like activities in Ulva P and Ulva E were significantly increased in comparison with other groups (P<0.05). The immunoglobulin M content was lower in the Ulva E than other groups (P<0.05). Expression patterns of splenic cytokine mRNA in the IL-$1{\beeta}$, IL-2 and IL-6 were similar. Expression rate of IL-$1{\beta}$, IL-2 and IL-6 in Ulva pertusa kjellman (Ulva P, Ulva E) were decreased (P<0.05) in comparison to other groups. Expression rate of IL-$1{\beta}$, IL-2 and IL-6 were significantly lower in groups treated with Ulva E than Ulva P. In conclusion, dietary supplementation of Ulva pertusa kjellman improved SOD like activity and affect immune system by inhibiting inflammatory response in broiler chicks. In addition, it is more effective to use Ulva pertusa kjellman extract than powder for immunomodulatory function. These results suggest the possibility that Ulva pertusa kjellman could be used as the immunomodulator for inflammatory response in broiler chicks.

키워드

참고문헌

  1. AOAC 1995 Official method of analysis. 16th ed. Association of Official Analytical Chemists, Washington DC USA P1-43.
  2. Ayako, Y., Koichi, Y. and Keiichi, O. 1999. Iodine distribution in blades of several laminarias grown in the same sea area. Bull. Jpn. Soc. Sci. Fish. 58:1373-1379.
  3. Azuine, M. A., Goswami, U. C. and Katal, J. J. 1992. Antimutagenic and anticarcinogenic effect of carotenoids and dietary palm oil. Nutr. Cancer 17:287-295. https://doi.org/10.1080/01635589209514198
  4. Chomczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by guanidium thiocyartate-phenol-chloroform extraction. Anal. Biochem. 162:156-159.
  5. Dreesman, G., Larson, C., Pinckard, R. N., Groyon, R. N. and Benedict, A. A. 1965. Antibody activity in different chicken glrobulins. Proc. Soc. Exp. Biol. Med. 140:1289-1293.
  6. Fellenberg, R. von. 1987. Kompendium derallgemeinen Immunologie. Verlag Paul Parey, Berlin und Hamburg.
  7. Han, J. G., Ha, J. H., Choi, Y. B., Go, J. L., Kang, D. H. and Lee, H. Y. 2009. The Comparison of Extraction Process for Enhancement of Immunomodulating Activities of Ulva pertusa kjellman. KOREAN J. FOOD SCI. TECHNOL. 41(4):380-385.
  8. Hanaa H. Abd El-Baky, Farouk K. El Baz and Gamal S. El Baroty. 2009. Potential Biological Properties of Sulphated Polysaccharides Extracted from the Macroalgae Ulva lactuca L. Academic Journal of Cancer Research. 2(1):01-11.
  9. Higgings, D. A. 1975. Physical and chemical properties of fowl immunoglobulins. The Vet. Bull. 45:139-154.
  10. Ito, K., Hori, K. 1989. Seaweeds; chemical composition and potential food uses. Food Rev. Int. 5:101-144. https://doi.org/10.1080/87559128909540845
  11. Ivanova, V.R., M. Rouseva, J. Kolarove Serkedjieva and N. Manolova. 1994. Isolation of a polysaccharide with antiviral effect from Ulva lactuca. Preparative Biochem. Biotechnol. 24:83-97. https://doi.org/10.1080/10826069408010084
  12. Kim, I. H., Lee, H. H., Jang, J. S., Lee, S. H., Ha, J. M., Ha, B. J. and Lee, J. H. 2006. Antioxidant and Antimicrobial Activities of Seaweed, Ulva lactuca. Environmental Mutagens & Carcinogens. 26(2):48-52.
  13. Klasing, K. C. 1994. Avian leukocytic cytokines. Poult. Sci. 73:1035-1043. https://doi.org/10.3382/ps.0731035
  14. Koenen, M. E., Boonstra-Blom, A. G. and Jeurissen, S. H. M. 2002. Immunological differences between layer- and broile-type chickens. Vet. Immunol. Immunopathol. 89:47-56. https://doi.org/10.1016/S0165-2427(02)00169-1
  15. Leshchinsky, T. V. and Klasing, K. C. 2001. Divergence of the inflammatory response in two types of chickens. Develop. and Comp. Immunol. 25:629-638. https://doi.org/10.1016/S0145-305X(01)00023-4
  16. Margret, R. J., Kumaresan, S. and Ravikumar, S. 2009. A preliminary study on the anti-inflammatory activity of methanol extract of Ulva lactuca in rat. Journal of Environmental Biology. 30(5):899-902.
  17. Mason, V. C., 1984. Metabolism of nitrogen compound in the large gut: Emphasis on recent findings in the sheep and pig. Proc Nutr Soc. 43:45-53. https://doi.org/10.1079/PNS19840026
  18. Nam, C. S., Kang, K. S., Ha, J. M., Lee, S. H., Lee, J. H., Lee, D. G., Jang, J. S., Kang, H. Y. and Ha, B. J. 2006. Anti-Oxidative Effects of Ulva lactuca Extract Fractions Against $CCl_4$ Toxification. J. Toxicol. Pub. Health. 22(4):333-338.
  19. Newmark, H. L. 1996. Plant phenolics as potential cancer prevention agents, Adv. Extract obtained from seaweeds. Bull. Korean. Fish. Soc. 19: 502-508.
  20. Ortiz, J., Romero, N., Robert, P., Araya, J., Lopez-Hemandez, J., Bozzo, C., Navarrete, E., Osorio, A. and Rio, A. 2005. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chemistry, 99:98-104.
  21. Pryor, W. A. 1986. Oxy-radicals and related species : their formation, lifetimes, and reactions. Annu. Rev. Physiol. 48:67-657.
  22. Ray, B. and Lahye, M. 1995. Cell-wall polysaccharides from the marine green alga Ulva rigida (Ulvaes, chlorphyta), extraction and chemical composition. Carbohyd. Res. 274:251-261. https://doi.org/10.1016/0008-6215(95)00138-J
  23. Rietschel, E. T., Schletter, J., Weidemann, B., El-Samalouti, V., Mattern, T., Znhringer, U., Seydel, U., Brade, H., Flad, H. D., Kusumoto, S., Gupta, D., Dziarski, R. and Ulmer, A. J. 1998. Lipopolysaccharide and peptidoglycan: CD14-dependent bacterial inducers of inflammation. Microb. Drug Resist. 4:37-44. https://doi.org/10.1089/mdr.1998.4.37
  24. SAS, 2008 SAS User's guide, Statistical Analysis System Inst. Inc Cary NC.
  25. Sibbald, I. R. 1976. A bioassay for true metabolizable energy in feedingstuffs. Poultry Sci. 48:41-43.
  26. Stefan, M. and Gudrun, M. 1974. Involvement of the superoxide anion radical in autoxidation of pyrogallol and convenient assay for superoxide dismutase. Eur. J. Biochem. 47:469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  27. Steinmetz, K. A. and Potter, J. D. 1991. Vegetable, fruit, and cancer II mechanism. Cancer Causes Aontril. 2:427-442. https://doi.org/10.1007/BF00054304
  28. Sugano, Y., Kodama, H., Terada, I., Yamajaki, Y. and Noma, M. 1994. Purification and characterization of a novel enzyme, ${\alpha}$-neoagararooligosaccharide hydrolase, from a marine bacterium, Vibrio sp. strain JT0107. J. Bacteriol. 176:6812-6818.
  29. Szenberg, A., Lind, P. and Clarke, K. 1965. IgG and IgM antibodies in fowl serum. Aust Exp Biol Med Sci. 43:451-454. https://doi.org/10.1038/icb.1965.79
  30. Xie, H., Rath, N.C., Huff, G. R., Balog, J. M. and Huff, W. E. 2000. Effects of Salmonella typhimurium lipopolysaccharide on brioler chickens. Poult. Sci. 79: 33-40.
  31. Yoo, J. S., Cheun, B. S. and Kim, N. G. 2001. Determination of Na+ channel blocker in seaweeds. Korean. J. Environ. Biol. 19:107- 112.
  32. 국립수산과학원. 2010. 기후변화에 따른 수산업 대응방안. 기후변화 대응사 업 추진성과 보고회.
  33. 환경부. 2008. 연안 녹조(綠潮)를 유발하는 해조류 갈파래의 생육 지도 작 성. 보도자료.
  34. 한국사양표준. 2007. 농촌진흥청 축산과학원.

피인용 문헌

  1. Kjellman, Inhibits LPS-Induced Inflammatory Response by Down-Regulating Mitogen-Activated Protein Kinase and NF-κB Pathways vol.46, pp.3, 2016, https://doi.org/10.4167/jbv.2016.46.3.167
  2. 4-Hydroxy-2,3-Dimethyl-2-Nonen-4-Olide Has an Inhibitory Effect on Pro-Inflammatory Cytokine Production in CpG-Stimulated Bone Marrow-Derived Dendritic Cells vol.14, pp.5, 2016, https://doi.org/10.3390/md14050088