DOI QR코드

DOI QR Code

백혈병환자 대상의 제1상임상시험 연속재평가방법

Continual Reassessment Method in Phase I Clinical Trials for Leukemia Patients

  • 이주형 (가톨릭대학교 의생명과학교실 의학통계학과) ;
  • 송혜향 (가톨릭대학교 의생명과학교실 의학통계학과)
  • Lee, Joo-Hyoung (Department of Medical Life Sciences, Division of Biostatistics, Catholic University) ;
  • Song, Hae-Hiang (Department of Medical Life Sciences, Division of Biostatistics, Catholic University)
  • 투고 : 20110200
  • 심사 : 20110300
  • 발행 : 2011.09.30

초록

제 1상 임상시험 계획에서 신약제의 최대허용용량을 추정하기 위해 전통적 방법인 표준 3+3계획과 모형중심의 베이지안 방법을 적용시킨 연속재평가방법이 주로 사용되고 있다. 본 논문에서는 치료불응 또는 재발된 백혈병이나 골수형성 이상증후군 환자를 대상으로 시행한 제 1상 임상시험의 연구계획을 개관하였다. 단순한 표준 3+3계획으로 환자확보 기간이 길어져 연구를 완성하지 못하고 때 이르게 중단할 수밖에 없는 실정에 반하여, 최근에 제시된 표준 3+1+1계획과 Rolling-6 계획은 연구기간을 크게 단축시킬 수 있다. 제1상 임상시험의 용량수준 선택과정에서 너무 보수적인 연구자의 태도는 최대허용용량의 정확한 추정을 불가능하게 한다. 새로운 환자에게 투여할 용량수준을 결정할 시점에서 용량제한 독성반응이 아직 나타나지 않은 환자의 관측시간 및 늦게 나타나는 환자의 독성반응 시간을 모두 감안한 연속재평가방법인 TITE-CRM계획이 유용하며, 이러한 CRM계획으로 진행되는 임상시험 시행 중 모의실험으로 각 용량수준에서 용량제한 독성반응율이 과대 또는 과소 추정되는지를 파악할 수 있음이 장점이다. 백혈병환자 대상의 임상연구에서 채택되는 제 1상 임상시험의 여러 연구계획의 장, 단점을 제시한다.

The traditional method of 3+3 standard design and model-based Bayesian continual reassessment method (CRM) are commonly used in Phase I clinical trials to identify the maximal tolerated dose(MTD) of a new drug. In this paper we review clinical examples of Phase I trials that were carried out in patients with refractory or relapsed leukemia and myelodysplastic syndrome. The recently proposed 3+1+1 design and rolling-6 design can shorten the trial duration, when a very slow accrual of patients with a simple 3+3 standard design may result in the untimely termination of trials. Too conservative approaches in determining the dose levels in Phase I clinical trials can leave clinical investigators unable to accurately determine the MTD. When determining future patient doses, the designs that use a time-to-event CRM can cooperate late toxicities by accounting for the proportion of the observation period of each enrolled patient. With the CRM design, simulations under different scenarios during the trial are important in detecting the under- or over-estimation of the initial estimate of the dose-limiting toxicity rate for each dose level. We present the advantages and drawbacks of the designs used in Phase I clinical trials for leukemia patients.

키워드

참고문헌

  1. Ahn, C. (1998). An evaluation of phase I cancer clinical trial designs, Statistics in Medicine, 17, 1537-1549. https://doi.org/10.1002/(SICI)1097-0258(19980730)17:14<1537::AID-SIM872>3.0.CO;2-F
  2. Attia, S., Morgan-Meadows, S., Holen, K. D., Bailey, H. H., Eickhoff, J. C., Schelman, W. R., Traynor, A. M., Mulkerin, D. L., Campbell, T. C., McFarland, T. A., Huie, M. S., Cleary, J. F., Tevaarwerk, A. J., Alberti, D. B., Wilding, G. and Liu, G. (2009). Dose-escalation study of fixed-dose rate gemcitabine combined with capecitabine in advanced solid malignancies, Cancer Chemotherapy and Pharmacology, 64, 45-51. https://doi.org/10.1007/s00280-008-0844-1
  3. Babb, J., Rogatko, A. and Zacks, S. (1998). Cancer phase I clinical trials: Efficient dose escalation with overdose control, Statistics in Medicine, 17, 1103-1120. https://doi.org/10.1002/(SICI)1097-0258(19980530)17:10<1103::AID-SIM793>3.0.CO;2-9
  4. Babb, J. S. and Rogatko, A. (2001). Patient specific dosing in a cancer phase I clinical trial, Statistics in Medicine, 20, 2079-2090. https://doi.org/10.1002/sim.848
  5. Brochstein, J. A., Grupp, S., Yang, H., Pillemer, S. R. and Geba, G. P. (2010). Phase-1 study of siplizumab in the treatment of pediatric patients with at least grade II newly diagnosed acute graft-versus-host disease, Pediatric Transplantation, 14, 233-241. https://doi.org/10.1111/j.1399-3046.2009.01223.x
  6. Cheung, Y. K. and Chappell, R. (2000). Sequential designs for phase I clinical trials with late-onset toxicities, Biometrics, 56, 1177-1182. https://doi.org/10.1111/j.0006-341X.2000.01177.x
  7. Dixon, W. J. and Mood, A. M. (1948). A method for obtaining and analyzing sensitivity data, Journal of the American Statistical Association, 43, 109-126. https://doi.org/10.2307/2280071
  8. Fiedler, W., Mesters, R., Heuser, M., Ehninger, G., Berdelb, W. E., Zirrgiebele, U., Robertsonf, J. D., Puchalskig, T. A., Collinsf, B., Jurgensmeierf, J. M. and Serve, H. (2010). An open-label, phase I study of cediranib (RECENTIN tm) in patients with acute myeloid leukemia, Leukemia Research, 34, 196-202. https://doi.org/10.1016/j.leukres.2009.07.020
  9. Gerke, O. and Siedentop, H. (2008). Optimal phase I dose-escalation trial designs in oncology-a simulation study, Statistics in Medicine, 27, 5329-5344. https://doi.org/10.1002/sim.3037
  10. Goodman, S. N., Zahurak, M. L. and Piantadosi, S. (1995). Some practical improvements in the continual reassessment method for phase I studies, Statistics in Medicine, 14, 1149-1161. https://doi.org/10.1002/sim.4780141102
  11. Kantarjian, H., Garcia-Manero, G., O'Brien, S., Faderl, S., Ravandi, F.,Westwood, R., Green, S. R., Chiao, J. H., Boone, P. A., Cortes, J. and Plunkett, W. (2010). Phase I clinical and pharmacokinetic study of oral sapacitabine in patients with acute leukemia and myelodysplastic syndrome, Journal of Clinical Oncology, 28, 285-291. https://doi.org/10.1200/JCO.2009.25.0209
  12. Korn, E. L., Midthune, D., Chen, T. T., Rubinstein, L. V., Christian, M. C. and Simon, R. M. (1994). A comparison of two phase I trial designs, Statistics in Medicine, 13, 1799-1806. https://doi.org/10.1002/sim.4780131802
  13. Lee, D. P., Skolnik, J. M. and Adamson, P. C. (2005). Pediatric phase I trials in oncology: An analysis of study conduct efficiency, Journal of Clinical Oncology, 23, 8431-8441. https://doi.org/10.1200/JCO.2005.02.1568
  14. Lonial, S., Kaufman, J., Tighiouart, M., Nooka, A., Langston, A. A., Heffner, L. T., Torre, C., McMillan, S., Renfroe, H., Harvey, R. D., Lechowicz, M. J., Khoury, H. J., Flowers, C. R. and Waller, E. K. (2010). A phase I/II trial combining high-dose melphalan and autologous transplant with bortezomib for multiple myeloma: A dose- and schedule-finding study, Clinical Cancer Research, 16, 5079-5086. https://doi.org/10.1158/1078-0432.CCR-10-1662
  15. Mick, R. and Ratain, M. J. (1993). Model-Guided determination of maximum tolerated dose in phase I clinical trials: Evidence for increased precision, Journal of the National Cancer Institute, 85, 217-223. https://doi.org/10.1093/jnci/85.3.217
  16. Normolle, D. and Lawrence, T. (2006). Designing dose-escalation trials with late-onset toxicities using the time-to-event continual reassessment method, Journal of Clinical Oncology, 24, 4426-4433. https://doi.org/10.1200/JCO.2005.04.3844
  17. O'Donnell, P. V., Luznik, L., Jones, R. J., Vogelsang, G. B., Leffell, M. S., Phelps, M., Rhubart, P., Cowan, K., Piantados, S. and Fuchs, E. J. (2002). Nonmyeloablative bone marrow transplantation from partially HLA-mismatched related donors using posttransplantation cyclophosphamide, Biology of Blood and Marrow Transplantation, 8, 377-386. https://doi.org/10.1053/bbmt.2002.v8.pm12171484
  18. Onar-Thomas, A. and Xiong, Z. (2010). A simulation-based comparison of the traditional method, rolling-6 design and a frequentist version of the continual reassessment method with special attention to trial duration in pediatric phase I oncology trials, Contemporary Clinical Trials, 31, 259-270. https://doi.org/10.1016/j.cct.2010.03.006
  19. O'Quigley, J. and Chevret, S. (1991). Methods for dose finding studies in cancer clinical trials: A review and results of a monte carlo study, Statistics in Medicine, 10, 1647-1664. https://doi.org/10.1002/sim.4780101104
  20. O'Quigley, J., Pepe, M. and Fisher, L. (1990). Continual reassessment method: A practical design for phase I clinical trials in cancer, Biometrics, 46, 33-48. https://doi.org/10.2307/2531628
  21. Park, I. H. and Song, H. H. (1999). Estimation of maximal tolerated dose in sequential phase I clinical trials, The Korean Communications, 6, 543-564.
  22. Piantadosi, S., Fisher, J. D. and Grossman, S. (1998). Practical implementation of a modified continual reassessment method for dose-finding trials, Cancer Chemotherapy and Pharmacology, 41, 429-436. https://doi.org/10.1007/s002800050763
  23. Rogatko, A., Babb, J. S., Tighiouart, M., Khuri, F. R. and Hudes, G. (2005). New paradigm in dose-finding trials: Patient-specific dosing and beyond phase I, Clinical Cancer Research, 11, 5342-5346. https://doi.org/10.1158/1078-0432.CCR-05-0458
  24. Simon, R., Freidlin, B., Rubinstein, L., Arbuck, S. G. and Christian, M. C. (1997). Accelerated titration designs for phase I clinical trials in oncology, Journal of National Cancer Institute, 89, 1138-1147. https://doi.org/10.1093/jnci/89.15.1138
  25. Siu, L. L., Rowinsky, E. K., Hammond, L. A., Weiss, G. R., Hidalgo, M., Clark, G. M., Moczygemba, J., Choi, L., Linnartz, R., Barbet, N. C., Sklenar, I. T., Capdeville, R., Gan, G., Porter, C.W., Von Hoff, D. D. and Eckhardt, S. G. (2002). A Phase I and pharmacokinetic study of SAM486A, a novel polyamine biosynthesis inhibitor, administered on a daily-times-five every-three-week schedule in patients with advanced solid malignancies, Clinical Cancer Research, 8, 2157-2166.
  26. Skolnik, J. M., Barrett, J. S., Jayaraman, B., Patel, D. and Adamson, P. C. (2008). Shortening the timeline of pediatric phase I trials: The rolling six design, Journal of Clinical Oncology, 26, 190-195. https://doi.org/10.1200/JCO.2007.12.7712
  27. Song, D. Y., Jones, R. J., Welsh, J. S., Haulk, T. L., Korman, L. T., Noga, S., Goodman, S., Herman, M., Mann, R., Marcellus, D., Vogelsang, G., Ambinder, R. F. and Abrams, R. A. (2003). Phase I study of escalating doses of low-dose-rate, locoregional irradiation preceding cytoxan-TBI for patients with chemotherapy-resistant non-Hodgkin's or Hodgkin's lymphoma, International Journal of Radiation Oncology, Biology, Physics, 57, 166-171. https://doi.org/10.1016/S0360-3016(03)00508-X
  28. Storer, B. E. (1989). Design and analysis of phase I clinical trials, Biometrics, 45, 925-937. https://doi.org/10.2307/2531693
  29. Storer, B. E. (2001). An evaluation of phase I clinical trial designs in the continuous dose-response setting, Statistics in Medicine, 20, 2399-2408. https://doi.org/10.1002/sim.903
  30. Tevaarwerk, A., Wilding, G., Eickhoff, J., Chappell, R., Sidor, C., Arnott, J., Bailey, H., Schelman, W. and Liu, G. (2011). Phase I study of continuous MKC-1 in patients with advanced or metastatic solid malignancies using the modified time-to-event continual reassessment method (TITE-CRM) dose escalation design, Investigative New Drugs, Published online: 12 January.
  31. Tighiouart, M., Rogatko, A. and Babb, J. S. (2005). Flexible Bayesian methods for cancer phase I clinical trials: dose escalation with overdose control, Statistics in Medicine, 24, 2183-2196. https://doi.org/10.1002/sim.2106
  32. Wetherill, G. B. (1963). Sequential estimation of quantal response curves (with discussion), Journal of the Royal Statistical Society, Series B, 25, 1-48.
  33. Yamamoto, K., Utsunomiya, A., Tobinai, K., Tsukasaki, K., Uike, N., Uozumi, K., Yamaguchi, K., Yamada, Y., Hanada, S., Tamura, K., Nakamura, S., Inagaki, H., Ohshima, K., Kiyoi, H., Ishida, T., Matsushima, K., Akinaga, S., Ogura, M., Tomonaga, M. and Ueda, R. (2010). Phase I study of KW-0761, a defucosylated humanized anti-CCR4 antibody, in relapsed patients with adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma, Journal of Clinical Oncology, 28, 1591-1598. https://doi.org/10.1200/JCO.2009.25.3575