DOI QR코드

DOI QR Code

Effect of long-term high-fat diet and fasting on energy metabolic substrates utilization in resting rats

  • Jeon, Yerim (Department of Physical Education, Konkuk University) ;
  • Kim, Jisu (Department of Physical Education, Konkuk University) ;
  • Hwang, Hyejung (Department of Physical Education, Konkuk University) ;
  • Suh, Heajung (Department of Physical Education, Konkuk University) ;
  • Lim, Kiwon (Department of Physical Education, Konkuk University)
  • Received : 2011.12.07
  • Published : 2011.12.31

Abstract

The effects of a high-fat diet and fasting on resting energy expenditure and energy substrate utilization were examined using the method of measuring whole body energy metabolism and oxygen uptake. Eight 4-week old male Sprague-Dawley rats were used for the high-fat diet experiment. Energy metabolism was measured using acrylic metabolic chambers over 24 hours. After 1-week of preliminary feeding, 4 rats were fed a chow diet, whereas the remaining 4 rats were fed a high-fat diet (HF) ad libitum, which contained 40% (w/w, calorie base 60%) more fat than that in the chow diet. The flow rate to measure energy metabolism inside the chamber was controlled at a mean of 3.5 L/min, and five chambers were subjected to measurement. One of the five chambers was used to correct errors by measuring the atmosphere. As a result of 5 weeks of control diet and high-fat diet feeding, body weight of the high-fat diet group tended to increase more than that in the control diet fed group, but the difference was not significant. Oxygen uptake and carbon dioxide production changed as time went on over the 24 hr. The respiratory exchange ratio also changed during the 24 hr, and the difference between the groups was significant. The control group showed significantly more carbohydrate oxidation than that of the high-fat diet fed group. A fasting experiment was conducted using six 7-week old Sprague-Dawley male rats. Energy metabolism measurements were performed using the same method as that used in the high-fat diet experiment; resting metabolism was measured prior to fasting, and a fasting condition began from 9:00 am the next day for 3 days to calculate energy metabolism. Both body weight and 24-hour oxygen uptake decreased significantly as a result of 3-day fasting. Total oxygen uptake in the first day decreased, and declined significantly on day 3 of fasting. Total 24-hour carbon dioxide production decreased significantly over the 3 days. The mean 24-hour respiratory exchange ratio decreased significantly. Additionally, energy expenditure during the dark period (20:00-08:00), which is the active period for rats, decreased significantly with fasting, whereas energy expenditure during the light period (08:00-20:00) did not increase by fasting.

Keywords

Acknowledgement

This study was supported by a Korean Research Foundation Grant funded by the Korean Government (MOEHRD)(KRF-2009-32A-G00058).