DOI QR코드

DOI QR Code

Synthesis of Quinoxaline Derivatives Using TiO2 Nanoparticles as an Efficient and Recyclable Catalyst

  • 투고 : 2011.08.08
  • 심사 : 2011.08.25
  • 발행 : 2011.10.20

초록

$TiO_2$ nanoparticles were synthesized and characterized by SEM and XRD techniques. The $TiO_2$ nanoparticles were employed as a recyclable, inexpensive and efficient catalyst for the synthesis of substituted quinoxalines in high to excellent yields and in relatively short duration.

키워드

참고문헌

  1. Jiang, Y.; Decker, S.; Mohs, C.; Klabunde, K. J. J. Catal. 1998, 180, 24. https://doi.org/10.1006/jcat.1998.2257
  2. Lucas, E.; Decker, S.; Khaleel, A.; Seitz, A.; Fultz, S.; Ponce, A.; Li, W.; Carnes, C.; Klabunde, K. J. Chem. Eur. J. 2001, 7, 2505. https://doi.org/10.1002/1521-3765(20010618)7:12<2505::AID-CHEM25050>3.0.CO;2-R
  3. Schlogl, R.; Abd Hamid, S. B. Angew. Chem., Int. Ed. 2004, 43, 1628. https://doi.org/10.1002/anie.200301684
  4. Kantam, M. L.; Laha, S.; Yadav, J.; Choudary, B. M.; Sreedhar, B. Adv. Synth. Catal. 2006, 348, 867. https://doi.org/10.1002/adsc.200505415
  5. Kantam, M. L.; Laha, S.; Yadav, J.; Sreedhar, B. Tetrahedron Lett. 2006, 47, 6213. https://doi.org/10.1016/j.tetlet.2006.06.163
  6. Yamazaki, S. Bull. Chem. Soc. Jpn. 1996, 69, 2955. https://doi.org/10.1246/bcsj.69.2955
  7. Reich, H. J.; Chow, F.; Peake, S. L. Synthesis 1978, 2, 299.
  8. Bortolini, O.; Di Furia, F.; Modena, G.; Seraglia, R. J. Org. Chem. 1985, 50, 2688. https://doi.org/10.1021/jo00215a019
  9. Klyachko, N. L.; Klibanov, A. M. Appl. Biochem. Biotechnol. 1992, 37, 53. https://doi.org/10.1007/BF02788857
  10. Yuan, Z. Y.; Su, B. L. Colloids Surf. A 2004, 241, 173. https://doi.org/10.1016/j.colsurfa.2004.04.030
  11. Nian, J. N.; Teng, H. J. Phys. Chem. B 2006, 110, 4193. https://doi.org/10.1021/jp0567321
  12. Bischoff, B. L.; Anderson, M. A. Chem. Mater. 1995, 7, 1772. https://doi.org/10.1021/cm00058a004
  13. Jung, H. S.; Shin, H.; Kim, J. R.; Kim, J. Y.; Hong, K. S.; Lee, J. K. Langmuir 2004, 20, 11732.
  14. Kim, D. H.; Hong, H. S.; Kim, S. J.; Song, J. S.; Lee, K. S. J. Alloys Compd. 2004, 375, 259. https://doi.org/10.1016/j.jallcom.2003.11.044
  15. Xiaoyan, P.; Xueming, M. Mater. Lett. 2004, 58, 513. https://doi.org/10.1016/S0167-577X(03)00536-6
  16. Guimaraes, J. L. Abbate, M.; Betim, S. B.; Alves, M. C. M. J. Alloys Compd. 2003, 352, 16. https://doi.org/10.1016/S0925-8388(02)01112-X
  17. Kamei, M.; Mitsuhashi, T. Surf. Sci. 2000, 463, L609. https://doi.org/10.1016/S0039-6028(00)00635-X
  18. Matsubara, M.; Yamaki, T.; Itoh, H.; Abe, H.; Asai, K. Jpn. J. Appl. Phys. 2003, 42, (5A Pt 2) L479. https://doi.org/10.1143/JJAP.42.L479
  19. Corona, P.; Carta, A.; Loriga, M.; Vitale, G.; Paglietti, G. Eur. J. Med. Chem. 2009, 44, 1579. https://doi.org/10.1016/j.ejmech.2008.07.025
  20. Tanimori, S.; Nishimura, T.; Kirihata, M. Bioorg. Med. Chem. Lett. 2009, 19, 4119. https://doi.org/10.1016/j.bmcl.2009.06.007
  21. Shaabani, A.; Maleki, A. Chem. Pharm. Bull. 2008, 56, 79. https://doi.org/10.1248/cpb.56.79
  22. Corona, P.; Vitale, G.; Loriga, M.; Paglietti, G. Farmaco 2000, 55, 77. https://doi.org/10.1016/S0014-827X(99)00119-6
  23. Hassan, S. Y.; Khattab, S. N.; Bekhit, A. A. Adel Amer, Bio. Med. Chem. Lett. 2006, 16, 1753. https://doi.org/10.1016/j.bmcl.2005.11.088
  24. Woo, G. H. C.; Snyder, J. K.; Wan, Z. K. Prog. Heterocycl. Chem. 2002, 14, 279. https://doi.org/10.1016/S0959-6380(02)80015-0
  25. Mizuno, T.; Wei, W. H.; Eller, L. R.; Sessler, J. L. J. Am. Chem. Soc. 2002, 124, 1134. https://doi.org/10.1021/ja017298t
  26. Crossley, J. C.; Johnston, L. A. Chem. Commun. 2002, 10, 1122.
  27. Cai, J. J.; Zou, J. P.; Pan, X. Q.; Zhang, W. Tetrahedron Lett. 2008, 49, 7386. https://doi.org/10.1016/j.tetlet.2008.10.058
  28. Mohsenzadeh, F.; Aghapoor, K.; Darabi, H. R. J. Braz. Chem. Soc. 2007, 18, 297.
  29. Mohammadi Ziarani, Gh.; Badiei, A.; Haddadpour, M. International J. Chem. 2011, 3, 87
  30. Yadav, J. S.; Reddy, B. V. S.; Premalatha, K.; Shankar, K. S. Synthesis 2008, 3787.
  31. Krishnakumar, B.; Velmurugan, R.; Jothivel, S.; Swaminathan, M. Catal. Commun. 2010, 11, 997. https://doi.org/10.1016/j.catcom.2010.04.021
  32. Kumar, A.; Kumar, S.; Saxena, A.; De, A.; Mozumdar, S. Catal. Commun. 2008, 9, 778. https://doi.org/10.1016/j.catcom.2007.08.021
  33. Lu, H. Y.; Yang, Sh. H.; Deng, J.; Zhang, Zh. H. Aust. J. Chem. 2010, 63, 1290. https://doi.org/10.1071/CH09532
  34. Ajaikumar, S.; Pandurangan, A. Appl. Catal. A: Gen. 2009, 357, 184. https://doi.org/10.1016/j.apcata.2009.01.021
  35. Alinezhad, H.; Salehian, F.; Biparva, P. Syn. Commun. 2011, In Press.
  36. Cullity, B. D. Elements of X-ray d*iffraction; vol. 1, Addison- Wesley, USA, 1978.
  37. Zhao, Zh.; Wisnoski, D. D.; Wolkenberg, S. E.; Leister, W. H.; Wang, Y.; Lindsley, C. W. Tetrahedron Lett. 2004, 45, 4873. https://doi.org/10.1016/j.tetlet.2004.04.144
  38. Hou, J. T.; Liu, Y. H.; Zhang, Zh. H. J. Heterocyclic Chem. 2010, 47, 703.
  39. Zare, A.; Hasaninejad, A.; Parham, A.; Moosavi-Zare, A. R.; Khedri, F.; Parsaee, Z.; Abdolalipoor-Saretoli, M.; Khedri, M.; Roshanakar, M.; Deisi, H. J. Serb. Chem. Soc. 2010, 75, 1315. https://doi.org/10.2298/JSC091014109Z
  40. Bhosale, R. S.; Sarda, S. R.; Ardhapure, S. S.; Jadhav, W. N.; Bhusare, S. R.; Pawar, R. P. Tetrahedron Lett. 2005, 46, 7183. https://doi.org/10.1016/j.tetlet.2005.08.080
  41. Guo, W. X.; Jin, H. L.; Chen, J. X.; Chen, F.; Ding, J. C.; Wu, H. Y. J. Braz. Chem. Soc. 2009, 20, 1674. https://doi.org/10.1590/S0103-50532009000900016
  42. Mirjalili, B. F.; Akbari, A. Chin. Chem. Lett. 2011, 22, 753. https://doi.org/10.1016/j.cclet.2010.12.016

피인용 문헌

  1. Self-assembled monolayer coated gold-nanoparticle catalyzed aerobic oxidation of α-hydroxy ketones in water: an efficient one-pot synthesis of quinoxaline derivatives vol.2, pp.11, 2012, https://doi.org/10.1039/c2cy20438j
  2. Nanoparticles as an Efficient and Recyclable Catalyst. vol.43, pp.10, 2012, https://doi.org/10.1002/chin.201210183
  3. Function of Nanocatalyst in Chemistry of Organic Compounds Revolution: An Overview vol.2013, pp.1687-4129, 2013, https://doi.org/10.1155/2013/341015
  4. An iron Schiff base complex loaded mesoporous silica nanoreactor as a catalyst for the synthesis of pyrazine-based heterocycles vol.39, pp.1, 2014, https://doi.org/10.1007/s11243-013-9772-y
  5. Nanocatalytic one-pot, four-component synthesis of some new triheterocyclic compounds consisting of pyrazole, pyran, and pyrimidinone rings vol.39, pp.9, 2015, https://doi.org/10.1039/C5NJ01046B
  6. Synthesis, characterization, and crystal structures of α, α′-bis(substituted-benzylidene)cycloalkanone derivatives by nano-TiO2/HOAc vol.42, pp.2, 2016, https://doi.org/10.1007/s11164-015-2039-9
  7. as a highly efficient, magnetically separable and recyclable heterogeneous nanocatalyst vol.6, pp.16, 2016, https://doi.org/10.1039/C6CY00316H
  8. A Novel One-Pot Synthesis of Quinoxaline Derivatives in Fluorinated Alcohols vol.33, pp.8, 2011, https://doi.org/10.5012/bkcs.2012.33.8.2581
  9. A New Three-Component Coupling reaction of Aryl Glyoxal, Malononitrile, and 4-Hydroxy Coumarin Catalysed by Recyclable Tio2 nanoparticles vol.38, pp.8, 2011, https://doi.org/10.3184/174751914x14050999895192
  10. Force-Induced Dissolution of Imaginary Mode in Mechanochemical Reaction: Dibenzophenazine Synthesis vol.123, pp.35, 2011, https://doi.org/10.1021/acs.jpcc.9b05582
  11. A General Method for the Synthesis of 11H-Indeno[1,2-B]Quinoxalin- 11-Ones and 6H-Indeno[1,2-B]Pyrido[3,2-E]Pyrazin-6-One Derivatives Using Mandelic Acid as an Efficient Organo-Catalyst at Room Temper vol.8, pp.None, 2011, https://doi.org/10.2174/2213337208666210825112301
  12. A general method for the synthesis of structurally diverse quinoxalines and pyrido-pyrazine derivatives using camphor sulfonic acid as an efficient organo-catalyst at room temperature vol.51, pp.7, 2011, https://doi.org/10.1080/00397911.2021.1873383