DOI QR코드

DOI QR Code

CdS Nanoparticles as Efficient Fluorescence Resonance Energy Transfer Donors for Various Organic Dyes in an Aqueous Solution

  • Received : 2011.04.21
  • Accepted : 2011.08.08
  • Published : 2011.10.20

Abstract

CdS nanoparticles (NPs) were synthesized in an aqueous phase in order to investigate their spectral behaviors as efficient fluorescence resonance energy transfer (FRET) donors for various organic dye acceptors. Our prepared CdS NPs exhibiting strong and broad emission spectra between 480-520 nm were able to transfer energy in a wide wavelength region from green to red fluorescence dyes. Rhodamine 6G (Rh6G), rhodamine B (RhB), and sulforhodamine 101 acid (Texas red) were tested as acceptors of the energy transfer from the CdS NPs. The three dyes and synthesized CdS NPs exhibited good FRET behaviors as acceptors and donors, respectively. Energy transfers from the CdS NPs and organic Cy3 dye were compared to the same acceptor Texas red dye at different concentrations. Our prepared CdS NPs appeared to exhibit better FRET behaviors comparable to those of the Cy3 dye. These CdS NPs in an aqueous solution may be efficient FRET donors for various organic dyes in a wide wavelength range between green and red colors.

Keywords

References

  1. Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M. Nat. Mater. 2003, 2, 630. https://doi.org/10.1038/nmat961
  2. Dua, P.; Jeong, S.; Lee, S. E.; Hong, S. W.; Kim, S.; Lee, D. K. Bull. Korean Chem. Soc. 2010, 31, 1555. https://doi.org/10.5012/bkcs.2010.31.6.1555
  3. Jamieson, T.; Bakhshi, R.; Petrova, D.; Pocock, R.; Imani, M.; Seifalian, A. M. Biomaterials 2007, 28, 4717. https://doi.org/10.1016/j.biomaterials.2007.07.014
  4. Forster, T. Ann. Phys. 1948, 2, 55.
  5. Stryer, L. Annu. Rev. Biochem. 1978, 47, 819. https://doi.org/10.1146/annurev.bi.47.070178.004131
  6. Lakowicz, J. R.; Malicka, J.; Gryczynski, I.; Gryczynski, Z.; Geddes, C. D. J. Phys. D: Appl. Phys. 2003, 36, R240. https://doi.org/10.1088/0022-3727/36/14/203
  7. Gadella, T. W. J. In FRET and FLIM Techniques; Elsevier: Amsterdam, 2009.
  8. Thomas, K. G.; Kamat, P. V. Acc. Chem. Res. 2003, 36, 888. https://doi.org/10.1021/ar030030h
  9. Noginov, M. A.; Vondrova, M.; Williams, S. M.; Bahoura, M.; Gavrilenko, V. I.; Black, S. M.; Drachev, V. P.; Shalaev, V. M.; Sykes, A. J. Opt. A. 2005, 7, S219. https://doi.org/10.1088/1464-4258/7/2/029
  10. Muddana, H. S.; Morgan, T. T.; Adair, J. H.; Butler, P. J. Nano Lett. 2009, 9, 1559. https://doi.org/10.1021/nl803658w
  11. Conley, N. R.; Biteen, J. S.; Moerner, W. E. J. Phys. Chem B 2008, 112, 11878. https://doi.org/10.1021/jp806698p
  12. Boulesbaa, A.; Issac, A.; Stockwell, D.; Huang, Z.; Huang, J.; Guo, J.; Lian, T. J. Am. Chem. Soc. 2007, 129, 15132. https://doi.org/10.1021/ja0773406
  13. Sadhu, S.; Patra, A. ChemPhysChem. 2008, 9, 2052. https://doi.org/10.1002/cphc.200800298
  14. Peng, H.; Zhang, L.; Kjällman, T. H.; Soeller, C.; Travas-Sejdic, J. J. Am. Chem. Soc. 2007, 129, 3048. https://doi.org/10.1021/ja0685452
  15. Wu, C. S.; Cupps, J. M.; Fan, X. Nanotechnology 2009, 20, 305502. https://doi.org/10.1088/0957-4484/20/30/305502
  16. Malik, M. A.; Revaprasadu, N.; O'Brien, P. Chem. Mater. 2001, 13, 913. https://doi.org/10.1021/cm0011662
  17. Mao, J.; Yao, J.-N.; Wang, L.-N.; Liu, W.-S. J. Colloid Interface Sci. 2008, 319, 353. https://doi.org/10.1016/j.jcis.2007.10.027
  18. Kim, T.; Noh, M.; Lee, H.; Joo, S.-W.; Lee, S. Y.; Lee, K. J. Phys. Chem. B 2009, 113, 14487. https://doi.org/10.1021/jp906096a
  19. Zhu, J.; Li, J.-J.; Zhao, J.-W. Sens. Act. B 2009, 138, 9. https://doi.org/10.1016/j.snb.2009.02.054
  20. Ganbold, E.-O.; Park, J.-H.; Ock, K.-S.; Joo, S.-W. Bull. Kor. Chem. Soc. 2011, 32, 519. https://doi.org/10.5012/bkcs.2011.32.2.519

Cited by

  1. Self-assembly of a renewable nano-sized triterpenoid 18β-glycyrrhetinic acid vol.2, pp.23, 2012, https://doi.org/10.1039/c2ra21051g
  2. Perovskite Quantum Dots-Based Monolithic Electrospun Fiber Membrane as an Ultrastable and Ultrasensitive Fluorescent Sensor in Aqueous Medium vol.7, pp.21, 2016, https://doi.org/10.1021/acs.jpclett.6b02045
  3. Self-assembly of Renewable  Nano-sized Triterpenoids vol.17, pp.9, 2017, https://doi.org/10.1002/tcr.201600123
  4. TiO2-Au nanocomposite materials modified photoanode with dual sensitizer for solid-state dye-sensitized solar cell vol.5, pp.4, 2013, https://doi.org/10.1063/1.4812641
  5. Energy transfer from fluorescein dye dispersed with CdS nanoparticles as evidenced by emission spectrum measurements vol.42, pp.p2, 2011, https://doi.org/10.1016/j.matpr.2020.11.591