참고문헌
- Domling, A.; Ugi, I. Angew. Chem. Int. Ed. 2000, 39, 3168. https://doi.org/10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U
- Kappe, C. O. Curr. Opin. Chem. Biol. 2002, 6, 314. https://doi.org/10.1016/S1367-5931(02)00306-X
- Domling, A. Curr. Opin. Chem. Biol. 2002, 6, 306. https://doi.org/10.1016/S1367-5931(02)00328-9
- Rafiee, E.; Jafari, H. Bioorg. Med. Chem. Lett. 2006, 16, 2463. https://doi.org/10.1016/j.bmcl.2006.01.087
- Brancatelli, G.; Bruno, G.; Nicolo, F.; Cordaro, M.; Grassi, G.; Risitano, F.; Scala, A. J. Mol. Struct. 2011, 998, 157. https://doi.org/10.1016/j.molstruc.2011.05.025
- Ablajan, K.; Xiamuxi, H. Chin. Chem. Lett. 2011, 22, 151. https://doi.org/10.1016/j.cclet.2010.09.023
- Beccalli, E. M.; Oelmi, M. L.; Marchesini, A. Tetrahedron 1998, 54, 14401. https://doi.org/10.1016/S0040-4020(98)00891-6
- Conti, P.; Dallanoce, C.; Amici, M. D.; Micheli, C. D.; Klotz, K. N. Bioorg. Med. Chem. 1998, 6, 401. https://doi.org/10.1016/S0968-0896(97)10051-7
- Gordaliza, M. G.; Faircloth, T.; Castro, M. A.; del Corral, J. M. M.; Lopez-Vazquez, M. L.; San Feliciano, A. J. Med. Chem. 1996, 39, 2865. https://doi.org/10.1021/jm960023h
- Kwon, T.; Heimann, A. S.; Oriaku, E. T.; Yoon, K. J. Med. Chem. 1995, 38, 1048. https://doi.org/10.1021/jm00006a026
- Kang, Y. Y.; Shin, K. J.; Yo, K. H.; Seo, K. J.; Hong, C. Y.; Lee, C. S.; Park, S. Y.; Kim, D. J.; Park, S. W. Bioorg. Med. Chem. Lett. 2000, 10, 95. https://doi.org/10.1016/S0960-894X(99)00646-0
- Abbiati, G.; Beccalli, E. M.; Broggini, G.; Zoni, C. Tetrahedron 2003, 59, 9887. https://doi.org/10.1016/j.tet.2003.10.053
- Cocivera, M.; Emo, A.; Chen, H. E.; Vaish, S. J. Am. Chem. Soc. 1976, 98, 7362. https://doi.org/10.1021/ja00439a042
- Villemin, D.; Martin, B.; Garrigues, B. Synth. Commun. 1993, 23, 2251. https://doi.org/10.1080/00397919308013781
- Zhang, Y. Q.; Wang, C.; Zhang, M. Y.; Cui, P. L.; Li, Y. M.; Zhou, X.; Li, J. C. Chin. J. Org. Chem. 2008, 28, 914.
- Cheng, Q. F.; Liu, X. Y.; Wang, Q. F.; Liu, L. S.; Liu, W. J.; Lin, Q.; Yang, X. J. Chin. J. Org. Chem. 2009, 29, 1267.
- Zhang, Y. Q.; Ma, J. J.; Wang, C.; Li, J. C.; Zhang, D. N.; Zang, X. H.; Li, J. Chin. J. Org. Chem. 2008, 28, 141.
- Sagoo, S. K.; Board, R.; Rolle, S. Lett. Appl. Microbiol. 2002, 34, 168. https://doi.org/10.1046/j.1472-765x.2002.01067.x
- Jones, J. M. Food Safety; Eagan Press, St. Paul, MN. 1992; p 93.
- Archer, A. W. Analyst 1980, 105, 407. https://doi.org/10.1039/an9800500407
- Gagliardi, L.; De Orsi, D.; Manna, L.; Tonelli, D. J. Liq. Chromatogr. Rel. Technol. 1997, 20, 1797. https://doi.org/10.1080/10826079708006333
- Mandrou, B.; Bressolle, F. J. Assoc. Off. Anal. Chem. 1980, 63, 675.
- Mandrou, B.; Nolleau, V.; Gastaldi, E.; Fabre, H. J. Liq. Chromatogr. Rel. Technol. 1998, 21, 829. https://doi.org/10.1080/10826079808000512
- Foulke, J. E. FDA Consumer 1993, 27, 33.
- Moorhoff, C. M.; Schneider, D. F. Monatsh. Chem. 1998, 129, 409.
- Liu, Q.; Ai, H. M.; Li, Z. Ultrason. Sonochem. 2011, 18, 477. https://doi.org/10.1016/j.ultsonch.2010.09.003
- Li, C. J.; Chan, T. H. Organic Reactions in Aqueous Media; John Wiley & Sons: New York, U. S. A., 1997; p 64
- Grieco, P. A. Organic Synthesis in Water; Blackie Academic and Professional: London, U. K., 1998; p 141.
- Lindstrom, U. M. Organic Reactions in Water; Blackwell Publishing: Oxford, U. K., 2007; p 60.
피인용 문헌
- Multicomponent reactions in unconventional solvents: state of the art vol.14, pp.8, 2012, https://doi.org/10.1039/c2gc35635j
- )-ones in Aqueous Medium vol.52, pp.6, 2015, https://doi.org/10.1002/jhet.2293
- 2-Hydroxy-5-sulfobenzoic acid: an efficient organocatalyst for the three-component synthesis of 1-amidoalkyl-2-naphthols and 3,4-disubstituted isoxazol-5(4H)-ones vol.41, pp.10, 2015, https://doi.org/10.1007/s11164-014-1844-x
- N-bromosuccinimide (NBS)-promoted, three-component synthesis of α,β-unsaturated isoxazol-5(4H)-ones, and spectroscopic investigation and computational study of 3-methyl-4-(thiophen-2-ylmethylene)isoxazol-5(4H)-one vol.41, pp.10, 2015, https://doi.org/10.1007/s11164-014-1857-5
- Efficient tandem synthesis of a variety of pyran-annulated heterocycles, 3,4-disubstituted isoxazol-5(4H)-ones, and α,β-unsaturated nitriles catalyzed by potassium hydrogen phthalate in water vol.41, pp.10, 2015, https://doi.org/10.1007/s11164-014-1863-7
- Boric acid-catalyzed multi-component reaction for efficient synthesis of 4H-isoxazol-5-ones in aqueous medium vol.41, pp.5, 2015, https://doi.org/10.1007/s11164-013-1411-x
- Phthalimide-N-oxyl salts: efficient organocatalysts for facile synthesis of (Z)-3-methyl-4-(arylmethylene)-isoxazole-5(4H)-one derivatives in water vol.147, pp.2, 2016, https://doi.org/10.1007/s00706-015-1565-x
- Fruit juice of Citrus limon as a biodegradable and reusable catalyst for facile, eco-friendly and green synthesis of 3,4-disubstituted isoxazol-5(4H)-ones and dihydropyrano[2,3-c]-pyrazole derivatives vol.42, pp.10, 2016, https://doi.org/10.1007/s11164-016-2553-4
- Ag/SiO2 as a recyclable catalyst for the facile green synthesis of 3-methyl-4-(phenyl)methylene-isoxazole-5(4H)-ones vol.42, pp.3, 2016, https://doi.org/10.1007/s11164-015-2167-2
- Expeditious green synthesis of 3,4-disubstituted isoxazole-5(4H)-ones catalyzed by nano-MgO vol.42, pp.9, 2016, https://doi.org/10.1007/s11164-016-2498-7
- -chromenes pp.00094536, 2018, https://doi.org/10.1002/jccs.201800203
- -toluenesulfonate (PPTS) in aqueous medium vol.48, pp.14, 2018, https://doi.org/10.1080/00397911.2018.1473440
- -montmorillonite vol.11, pp.2, 2018, https://doi.org/10.1080/17518253.2018.1434564
- Three-Component Synthesis of Isoxazolone Derivatives in the Presence of 4-(N,N-Dimethylamino)pyridinium Acetate as a Protic Ionic Liquid vol.42, pp.4, 2011, https://doi.org/10.1007/s40995-017-0453-0
- Green Synthesis of 3-Substituted-4-arylmethylideneisoxazol-5(4H)-one Derivatives Catalyzed by Salicylic Acid vol.6, pp.1, 2011, https://doi.org/10.2174/2213337206666190214161332
- Reactivity of Z- and E-isomers of 2-benzamido-3-phenylacrylohydrazide towards some carbon electrophiles. A comparative study vol.49, pp.18, 2019, https://doi.org/10.1080/00397911.2019.1623258
- Synthesis and characterization of nanocrystalline hydroxyapatite and its catalytic behavior towards synthesis of 3,4‐disubstituted isoxazole‐5(4H)‐ones in water vol.33, pp.10, 2011, https://doi.org/10.1002/aoc.5118
- Rapid, Greener and Ultrasound Irradiated One‐Pot Synthesis of 4‐(Substituted‐1 H ‐Pyrazol‐4‐yl)Methylene)‐3‐Isopropylisoxazol‐5(4 H ) vol.4, pp.37, 2011, https://doi.org/10.1002/slct.201902164
- Green Three-component Synthesis of Merocyanin Dyes Based on 4- Arylideneisoxazol-5(4H)-ones vol.7, pp.None, 2020, https://doi.org/10.2174/2213346107666200122093906
- Sulfonated Graphene‐Oxide as Metal‐Free Efficient Carbocatalyst for the Synthesis of 3‐Methyl‐4‐(hetero)arylmethylene isoxazole‐5(4 H )‐ones and Substi vol.5, pp.2, 2011, https://doi.org/10.1002/slct.201904164
- Sulfonated Graphene‐Oxide as Metal‐Free Efficient Carbocatalyst for the Synthesis of 3‐Methyl‐4‐(hetero)arylmethylene isoxazole‐5(4 H )‐ones and Substi vol.5, pp.2, 2011, https://doi.org/10.1002/slct.201904164
- Cu/TCH-pr@SBA-15 nano-composite: a new organometallic catalyst for facile three-component synthesis of 4-arylidene-isoxazolidinones vol.10, pp.46, 2011, https://doi.org/10.1039/d0ra01314e
- Greener Synthesis of 3,4-Disubstituted Isoxazole-5(4H)-ones in a Deep Eutectic Solvent vol.52, pp.6, 2011, https://doi.org/10.1080/00304948.2020.1799672
- One-pot three-component synthesis of isoxazole using ZSM-5 as a heterogeneous catalyst vol.50, pp.23, 2011, https://doi.org/10.1080/00397911.2020.1815786
- Organocatalyzed Three-Component Synthesis of Isoxazol-5(4H)-ones under Aqueous Conditions vol.102, pp.9, 2021, https://doi.org/10.3987/com-21-14488
- Fruit Extract of Averrhoa bilimbi: A Green Neoteric Micellar Medium for Isoxazole and Biginelli-Like Synthesis vol.47, pp.10, 2011, https://doi.org/10.1007/s11164-021-04539-y