DOI QR코드

DOI QR Code

A Study on the Combustion Characteristics of Flat-Plate Premixed Burner for Various Flame Surface Media and Heat Exchangers

평판형 예혼합 버너의 다양한 화염면 매질 및 열교환기에 따른 연소 특성

  • Received : 2011.01.25
  • Accepted : 2011.08.15
  • Published : 2011.10.01

Abstract

The premixed burner is a very strong candidate for using household boiler burner system because it has high efficiency, low emission and can be used in compact boiler system. Usually, household boiler burner systems use a Bunsen burner, which consists of an inner rich premixed flame and fuel burned completely by a secondary air supply. It has a relatively long flame length and operates in a high excess of air, so it is difficult to fit such a burner into a high efficiency compact boiler. In this paper, the characteristics of a premixed combustion burner for surface media such as metal fiber, ceramic, and SUS fin were evaluated. In particular, the flow velocity over the burner surface for the cold flow characteristics of the surface material were measured and adjusted. The combustion tests were carried out by taking pictures of the flame and measuring the flame temperature. The amounts of CO and NO were measured and the characteristics of the surface burner materials, combustion chamber, and heat exchangers were evaluated for various excess air ratios and heating values.

예혼합 버너는 높은 효율과 낮은 배기 때문에 가정용 보일러 버너 시스템에 매우 강력한 버너이다. 일반적으로 가정용 보일러 버너는 내부에 농후한 예혼합 불꽃으로 구성하고 연료는 2차공기의 공급에 의하여 완전연소 되는 분젠 버너를 이용한다. 이것은 상대적으로 긴 불꽃 길이와 높은 과잉공기비에서 작동하기 때문에 높은 효율을 갖는 소형 보일러에 적용하기 어렵다. 이 논문에서 메탈 화이버, 세라믹, SUS 핀과 같은 매질을 사용하는 예혼합 연소 버너의 특징을 실험하였다. 특히, 표면 매질의 비반응 유동 특성은 버너 표면 전체의 유동 속도를 측정하고 조정하였다. 연소 실험은 화염 사진과 화염 온도 측정에 의하여 수행되었다. CO와 NO는 다양한 과잉 공기비와 열량값에 대하여 버너 표면 매질, 연소실, 열교환기의 특성을 측정하고 평가하였다.

Keywords

References

  1. Turns, S. R., 2000, An Introduction to Combustion 2nd Edition, McGraw-Hill, New York
  2. Bowman, C. T., 1992, "Control of Combustion Generated Nitrogen Oxide Emissions : Technology Driven by Regulation," Proc. Combust. Inst., Vol. 24, pp. 859-878. https://doi.org/10.1016/S0082-0784(06)80104-9
  3. Beer, J. M., 1996, "Low NOx Burners for Boilers, Furnaces, and Gas Turbines; Drive Towards the Low Bounds of $NO_{x}$ Emissions," Combust Sci. and Tech., Vol. 121, pp. 169-191. https://doi.org/10.1080/00102209608935593
  4. Ahn, K. Y., Kim, H. S., Cho, E-. S., Ahn, J. H. and Kim, Y. M., 1999, "An Experimental Study on Combustion Processing and $NO_{x}$ Emission Characteristics of the Air-Staged Burner," KSME International Journal, Vol. 13, No. 6, pp. 477-486. https://doi.org/10.1007/BF02947717
  5. Williams, M. A., Woolley, R. and Lawes, M., 1992, "The Formation of NOx in Surface Burners," Combustion and Flame, Vol. 89, pp. 157-166. https://doi.org/10.1016/0010-2180(92)90025-K
  6. Cho, E-. S. and Chung, S. H., 2004, "A Numerical Analysis of the NO Emission Characteristics in $CH_{4}/Air$ Counterflow Premixed Flame," KOSCO Journal, Vol. 9, No. 4, pp. 22-27.
  7. Hwang, S.-S., 2001, "Combustion and Emission Characteristics of the Surface Flames in Porous Ceramic Burner," KOSCO Journal, Vol. 6, No. 1, pp. 29-35.
  8. Heo, J.-S., 2004, "A Study on Cylinderical Burner and Heat Exchanger for Condensing Boiler" Inha Univ. p.58.