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AN IDENTIFICATION OF THE FREQUENCIES AND

AMPLITUDES OF THE TRIGONOMETRIC SERIES

Ji Chan Chung, Min Soo Kang, Soo Han Kim, and Il Seog Ko

Abstract. In this paper, we propose an algorithm for identifying ωj ∈
(0,∞), aj , bj ∈ C and N of the following trigonometric series

f(t) = a0 +

N∑
j=1

[
aj cosωjt+ bj sinωjt

]
by means of the finite number of sample values. We prove that the fre-
quency components are shown to be the solutions of some characteristic
equation related to the inverse of a Hankel matrix derived from the sample
values.

1. Introduction

In this paper we consider the problem of identifying ωj ∈ (0,∞), aj , bj ∈ C
and N of the following trigonometric series

(1) f(t) = a0 +

N∑
j=1

[
aj cosωjt+ bj sinωjt

]
by means of the finite number of values f(t1), . . . , f(tL) where the number L
of the values depends on N .

In engineering, it is well known that a (sound) signal can be represented as
a trigonometric series as in (1). The algorithm developed in this paper thus
can be applied to analyze the signals from the engineering point of view.

The main idea of this paper is originated from the paper [1] and [2] by El
Badia and Ha-Duong. In those papers, the authors established an algebraic
algorithm to solve inverse source problems for elliptic equations in 2D and 3D
whose source terms are assumed to be the combination of either monopoles
or dipoles. Applying the concept of the reciprocity gap functional (see [1] and
references therein), they reduce the inverse problem to a problem of solving the
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following algebraic equation

(2) cn =

M∑
j=1

λjα
n
j , n = 0, 1, 2, . . . ,

where cn are given and αj and λj are unknowns and provide an algorithm
to solve the equation (2) using the method of Hankel matrix decomposition.
Since the main problem of this paper also can be reduced to the problem
of solving the equation (2) (see the next section), we applied a similar, but
more systematic, method proposed in [1, 2], to provide a detection algorithm.
Precisely, it is shown that the frequency components ωj are the solutions of
some characteristic equation related to the inverse of a Hankel matrix derived
from the sample values f(t1), f(t2), . . . , f(tL).

One of the point of this paper is to develop an algorithm without depend-
ing on any advanced knowledge of mathematics but on the mathematics of
elementary level.

2. Identification of frequencies and amplitudes of the signal

Throughout this paper, we assume an a priori information: we know an
upper bound N0 of N and M0 of ωj for each j = 1, 2, . . . , N .

Let f be a trigonometric series of the form given in (1) whose values f(t) on
the set

(3) A =

{
tn =

nπ

M0
| n = 0,±1,±2, . . . ,±(2N0 + 1)

}
,

where M0 is an upper bound of the set {ω1, . . . , ωN} are assumed to be, a
priori known. We will propose an algorithm to identify aj , bj ∈ C, ωj ∈ R and
N from the sample values f(tn), tn ∈ A.

It is easy to see that

f(tn) = a0 +

N∑
j=1

[
aj cosωj

nπ

M0
+ bj sinωj

nπ

M0

]
=

N∑
j=0

[
λjα

n
j + λjαn

j

]
(4)

for n = 0,±1, . . . ,±(2N0 + 1), where
(5)

λj =

{ aj

2 if j = 0,
aj−ibj

2 if j = 1, 2, . . . , N,
αj =

{
1 if j = 0,

cos
ωjπ
M0

+ i sin
ωjπ
M0

if j = 1, 2, . . . , N

and z denotes the conjugate of z ∈ C.
Define cn := f(t−n)+ f(tn), n = 0, 1, . . . , 2N0 +1. Since αj = α−1

j , we have

(6) cn =
N∑
j=0

(λj + λj)(α
n
j + αn

j ), n = 0, 1, . . . , 2N0 + 1.
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Lemma 2.1. For α ∈ C with |α| = 1, (α + α)n =
∑[n2 ]

k=0

(
n
k

)
(αn−2k +

αn−2k).

Proof.

(α+ α)n

=

n∑
k=0

(
n

k

)
αn−kαk

=
1

2

[
n∑

k=0

(
n

k

)
αn−kαk +

n∑
k=0

(
n

k

)
αn−kαk

]

=
1

2

[
n∑

k=0

(
n

k

)
(αn−kαk + αn−kαk)

]

=
1

2

 [n2 ]∑
k=0

(
n

k

)
αkαk(αn−2k + αn−2k) +

n∑
k=[n2 ]+1

(
n

k

)
αn−kαn−k(α2k−n + α2k−n)


=

[n2 ]∑
k=0

C(n, k)(αn−2k + αn−2k),

where

C(n, k) =

{
2
(
n
k

)
if 2k = n(

n
k

)
otherwise. □

Remark 2.2. Following the above calculation, one can also prove that

(α− α)n =

[n2 ]∑
k=0

C(n, k)(−1)k
(
αn−2k + (−1)nαn−2k

)
.

Define

(7) dn :=
N∑
j=0

µjβ
n
j , n = 0, 1, . . . , 2N0 + 1,

where µj = λj + λj and βj = αj + αj . Then it follows from the above lemma

that dn =
∑[n2 ]

k=0 C(n, k) · cn−2k. Due to the above observation, we are led to
the problems of

• detecting N and
• solving the following system of equation

dn =
N∑
j=0

µjβ
n
j , n = 0, 1, . . . , 2N0
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for given d0, d1, . . . , d2N0+1, where µj and βj , j = 0, 1, . . . , N are un-
knowns.

The above two problems can be solved based on the following simple observa-
tion.

Theorem 2.3. Let dn :=
∑N

j=0 µjβ
n
j , n = 0, 1, . . . , 2N0. For the following

Hankel matrix of the size n× n

Hn :=


d0 d1 · · · dn−1

d1 d2 · · · dn
...

...
. . .

...
dn−1 dn · · · d2n−2

 , n = 2, 3, . . . ,

we have the following.

(i) detHN+1 = µ0µ1 · · ·µN

N∏
i,j=0
i<j

(βi − βj)
2.

(ii) detHN+k = 0, k = 2, 3, . . . .

(iii) l1, l2, . . . , lN+1 satisfy

xN+1 + l1x
N + · · ·+ lNx+ lN+1 = (x− β0)(x− β1) · · · (x− βN )(8)

if and only if l1, l2, . . . , lN+1 satisfy

(9)


d0 d1 · · · dN
d1 d2 · · · dN+1

...
...

. . .
...

dN dN+1 · · · d2N




lN+1

lN
...
l1

 =


−dN+1

−dN+2

...
−d2N+1

 .

Proof. (i) can be easily proved from the following decomposition:
(10)

HN+1 =


1 1 · · · 1
β0 β1 · · · βN

...
...

. . .
...

βN
0 βN

1 · · · βN
N




µ0 0 · · · 0
0 µ1 · · · 0
...

...
. . .

...
0 0 · · · µN




1 1 · · · 1
β0 β1 · · · βN

...
...

. . .
...

βN
0 βN

1 · · · βN
N


T

.

Computing [the (N + k)th column]−l1×[the (N + k − 1)th column− · · · −
lN+1×[the (k − 1)th column], we have
(11)

det


d0 d1 · · · dN+k−1

d1 d2 · · · dN+k

...
...

. . .
...

dN+k−1 dN+k · · · d2N+2k−2

 = det


d0 d1 · · · dN+k−2 0
d1 d2 · · · dN+k−1 0
...

...
. . .

...
...

dN+k−1 dN+k · · · d2N+2k−1 0


which proves (ii). Now let us prove the necessity of (iii). Suppose l1, . . . , lN+1

be constants satisfying (8). Then it follows from the following decomposition
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d0 d1 · · · dN+1

d1 d2 · · · dN+2

...
...

. . .
...

dN dN+1 · · · d2N+1



=


1 1 · · · 1
β0 β1 · · · βN

...
...

. . .
...

βN
0 βN

1 · · · βN
N




µ0 0 · · · 0
0 µ1 · · · 0
...

...
. . .

...
0 0 · · · µN




1 β0 · · · βN+1
0

1 β1 · · · βN+1
1

...
...

. . .
...

1 βN · · · βN+1
N


that 

d0 d1 · · · dN+1

d1 d2 · · · dN+2

...
...

. . .
...

dN dN+1 · · · d2N+1




lN+1

lN
...
l1
1

 =


0
0
...
0

 ,

which is equivalent to the equation (9). The sufficiecy of (iii) follows easily
from the fact that HN+1 is invertible. □

The above theorem suggests that if we know the number N , then we first
solve the equation (9) to find l1, l2, . . . , lN+1. We then solve the equation

xN+1 + l1x
N + · · ·+ lNx+ lN+1 = 0

whose solutions are β0, β1, . . . , βN . µ0, µ1, . . . , µN can be calculated by using
the decomposition (10). In order to determine N , we use the formula (i) and
(ii) in Theorem 2.3. One starts with the upper bound N0 of N and compute
the determinant of HN0+1,HN0 ,HN0−1, . . . until one first meet Hk+1 whose
determinant is not zero. Then k is the number N .

3. Algorithm

Based on the properties we have discussed in the previous section, we provide
an algorithm.

Algorithm.

Given f(t) = a0 +
∑N

j=1

[
aj cosωjt+ bj sinωjt

]
, suppose the values f(t) on

the set

A =

{
tn =

nπ

M0
| n = 0,±1, . . . ,±(2N0 + 1)

}
are known. Let cn = f(t−n) + f(tn), n = 0, 1, . . . , 2N0 + 1.

[STEP I]

Compute dn =
∑[n2 ]

k=0

(
n
k

)
cn−2k, n = 0, 1, . . . , 2N0 + 1.

[STEP II]
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Starting with n = N0, compute the determinant Hn+1 for n = N0, N0−1, . . .
until one first finds an integer K satisfying detHK+1 ̸= 0. Let N = K.

[STEP III]
Solve the equation

d0 d1 · · · dN
d1 d2 · · · dN+1

...
...

. . .
...

dN dN+1 · · · d2N




lN+1

lN
...
l1

 =


−dN+1

−dN+2

...
−d2N+1


to calculate l1, l2, · · · , lN+1.

[STEP IV]
Solve the polynomial equation

xN+1 + l1x
N + · · ·+ lNx+ lN+1 = 0

to obtain N + 1 simple roots β0, β1, . . . , βN . From (5) and (7), we have βj =
2 cos

ωjπ
M0

, j = 1, 2, . . . , N . Since 0 ≤ ωjπ
M0

≤ π, j = 1, 2, . . . , N , ω1, ω2, . . . , ωN

are determined uniquely.

[STEP V]
Using the decomposition (10), calculate µ0, µ1, . . . , µN . Then it follows from

(5) and (7) that µj = aj , j = 0, 1, . . . , N .

[STEP VI]
To determine bj , use the fact that

f(t−n)− f(tn) =
N∑
j=1

(λj − λj)(α
n
j + αn

j ),

where λj =
aj−ibj

2 .

Remark 3.1. Since (4) can be rewritten as

(12) f(tn) =

4N+1∑
j=0

λjα
n
j

with λN+j := λj−1 and αN+j := αj−1, it is also possible to apply the above al-
gorithm directly from (12) (without using Lemma 2.1) to determine αj and λj .
But in this case, one have to calculate determinants and to solve homogeneous
system of equations with respect to the Hankel matrices whose sizes are bigger
that (4N + 1)× (4N + 1), which needs a great deal of amount of calculations
comparing with the algorithm proposed in this paper.

4. An application to the more general case

In this section, we show that the method of this paper can be applied to
identify the series whose form is more general than that of (1).
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Consider a series of the form

f(t) = a0 +

N∑
j=1

[
aj cos τjt+ bj sinωjt

]
,

where the values f(tn), tn ∈ A are a priori given. Here A is the set defined
the same as (3), where M0 is an upper bound of the set {τj , ωj | 1 ≤ j ≤ N}.
Since

f(tn) = a0 +
N∑
j=1

[
aj cos τj

nπ

M0
+ bj sinωj

nπ

M0

]
=

N∑
j=0

[
aj
2
(αn

j + αn
j ) +

bj
2i
(βn

j − βn
j )

]
for n = 0,±1, . . . ,±(2N0 + 1), where

αj =

{
1 if j = 0,

cos
τjπ
M0

+ i sin
τjπ
M0

if j = 1, 2, . . . , N,

βj =

{
1 if j = 0,

cos
ωjπ
M0

+ i sin
ωjπ
M0

if j = 1, 2, . . . , N

and b0 = 0. Define cn := f(t−n) + f(tn) and dn := f(tn) − f(t−n), n =
0, 1, . . . , 2N0 + 1. We have

cn =
N∑
j=0

aj(α
n
j + αj

n)

and

dn =

N∑
j=0

−ibj(β
n
j − βj

n
).

Since cn is the same form as (6), N , aj and τj can be detected by following the
same algorithm in the previous section. Now it remains to identify bj and ωj .
Using the formula in Remark 2.2 instead of that in Lemma 2.1, one can easily
modify the algorithm in the previous section to detect bj and ωj .
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