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A SHORT PROOF OF AN IDENTITY FOR CUBIC

PARTITION FUNCTION

Xinhua Xiong

Abstract. In this note, we will give a short proof of an identity for cubic
partition function.

1. Introduction

Let p(n) denote the number of the unrestricted partitions of n, defined by∑∞
n=0 p(n)q

n =
∏∞

n=0
1

1−qn . One of the celebrated results about p(n) is the

theorem which was proved by Watson [8]: if k ≥ 1, then for every nonnegative
integer n

(1) p(5kn+ rk) ≡ 0 (mod 5k),

where rk is the reciprocal modulo 5k of 24. Recently, the notion of cubic
partitions of a natural number n, named by Kim [5], was introduced by Chan
[1] in connection with Ramanujan’s cubic continued fraction. By defintion, the
generating function of the number of cubic partitions of n is

(2)
∞∑

n=0

a(n)qn =
∞∏

n=1

1

(1− qn)(1− q2n)
.

Chan [1] from the Ramanujan’s cubic continued fraction

v(q) :=
q

1
3

1 +

q + q3

1 +

q2 + q4

1 +
. . . |q| ≤ 1

derived an elegant identity: let x(q) = q−
1
3 v(q), then

1

x(q)
− q

1
3 − 2q

2
3x(q) =

(q
1
3 ; q

1
3 )∞(q

2
3 ; q

2
3 )∞

(q3; q3)∞(q6; q6)∞
,

where we set for |q| ≤ 1, (c; q)∞ :=
∏∞

n=0(1− cqk). From this he obtained the
generating function for a(3n+ 2) [1, Theorem 1]:

Received June 9, 2010.
2010 Mathematics Subject Classification. Primary 11F11, 11P83.
Key words and phrases. q-series identities, modular functions, cubic partition.

c⃝2011 The Korean Mathematical Society

551



552 XINHUA XIONG

Theorem 1.1.
∞∑

n=0

a(3n+ 2)qn = 3
(q3; q3)3∞(q6; q6)3∞
(q; q)4∞(q2; q2)4∞

.(3)

In this note, we will give a short proof of Theorem 1.1. The proof of Theorem
1.1 by Chan used identities involved Ramanujan’s cubic continued fraction. Our
proof depends on meromorphic modular functions on Γ0(6) and Γ0(18).

2. Preliminaries

Let H := {z ∈ C|Im(z) > 0} denote the complex upper half plane, for
a positive integer N , define the congruence subgroup Γ0(N) of SL2(Z) by

Γ0(N) :=
{(

a b
c d

) ∣∣∣c ≡ 0 (mod N)
}
. Let γ =

(
a b
c d

)
∈ SL2(Z) act on the com-

plex upper half plane by the linear fractional transformation γz := az+b
cz+d . Let

f(z) be a function on H which satisfies f(γz) = f(z), if f(z) is meromorphic
on H and at all the cusps of Γ0(N), then we call f(z) a meromorphic modular
function with respect to Γ0(N). The set of all such functions is denoted by
M0(Γ0(N)).

Dedekind’s eta function is defined by η(z) := q
1
24

∏∞
n=1(1 − qn), where q =

e2πiz and Im(z) > 0. A function f(z) is called an eta-product if it can be
written in the form of f(z) =

∏
δ|N ηrδ(δz), where N is a natural number

and rδ is an integer. The following proposition due to Gordon, Hughes [4]
and Newman [7] which is useful to verify whether an eta-product is a modular
function.

Proposition 2.1. If f(z) =
∏

δ|N ηrδ(δz) is an eta-product with 1
2

∑
δ|N rδ = 0

satisfies the conditions:∑
δ|N

δrδ ≡ 0 (mod 24),
∑
δ|N

N

δ
rδ ≡ 0 (mod 24),

∏
δ|N

δrδ ∈ Q2,

then f(z) is in M0(Γ0(N)).

The following proposition due to Ligozat [6] which gives the analytic orders
of an eta-product at the cusps of Γ0(N).

Proposition 2.2. Let c, d and N be positive integers with d|N and (c, d) = 1.
If f(z) is an eta-product satisfying the conditions in Proposition 2.1 for N ,
then the order of vanishing of f(z) at the cusp c

d is

N

24

∑
δ|N

(d, δ)2rδ

(d, N
d )dδ

.

Let p be a prime, and f(q) =
∑∞

n≥n0
a(n)qn be a formal power series, we

define Upf(q) =
∑

pn≥n0
a(pn)qn. If f(z) ∈ M0(Γ0(N)), then f(z) has an

expansion at the point i∞ of the form f(z) =
∑∞

n=n0
a(n)qn where q = e2πiz
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and Im(z) > 0. We call this expansion the Fourier series of f(z). Moreover we
define Upf(z) to be the result of applying Up to the Fourier series of f(z).

We use the results on the U3-operator (we write U for U3 in the follow-
ing) acting on modular functions on M0(Γ0(6)) and M0(Γ0(18)) stated by
Gordon and Hughes [4]. We know that Γ0(6) has 4 cusps, represented by
0, 1

2 ,
1
3 ,

1
6 (= i∞), Γ0(18) has 8 cusps, represented by 0, 1

2 ,
1
3 ,

2
3 ,

1
6 ,

5
6 ,

1
9 ,

1
18 (=

i∞). By Ligozat’s formula on the analytic orders of an eta-product, if f(z)
is in M0(Γ0(N)), then f(z) has the same order at the cusps which have the
same denominators. The order of U3(f(z)) at a cusp r of Γ0(6) is denoted by
ordrU(f), and the order of f(z) at a cusp of s of Γ0(18) is denoted by ordsf .

Proposition 2.3. Let f(z) be an eta-product in M0(Γ0(18)). Then U3(f(z))
is in M0(Γ0(6)), and

ord0U(f) ≥ min (ord0f, ord 1
3
f), ord 1

2
U(f) ≥ min (ord 1

2
f, ord 1

6
f),(4)

ord 1
3
U(f) ≥ 1

3
ord 1

9
f, ord 1

6
U(f) ≥ 1

3
ord 1

18
f.(5)

Moreover, U(f) has no poles on H except the cusps.

3. Proof of Theorem 1.1

Let the eta-product

F := F (z) =
η(9z)

η(z)

η(18z)

η(2z)
,

put N = 18, we find that F (z) satisfies the conditions of Newman-Gordon-
Hughes’s theorem, i.e., Proposition 2.1, so F (z) is in M0(Γ0(18)). We use
Ligozat’s formula to calculate the orders of F (z) at the cusps c

d , for d =
1, 2, 3, 6, 9, 18. We give the calculation of the case of d = 1 as an example:

ord0F =
18

24× (1, 18
1 )

∑
δ|18

(1, δ)2

δ
rδ

=
18

24
×
(
(1, 9)2

9
× 1 +

(1, 18)2

18
× 1 +

(1, 1)2

1
× (−1) +

(1, 2)2

2
× (−1)

)
= −1.

Similar calculations give

ord 1
2
F = −1, ord 1

3
F = 0, ord 1

6
F = 0, ord 1

9
F = 1, ord 1

18
F = 1.

By Proposition 2.3, the orders of U(F ) at the cusps of Γ0(6) satisfy

ord0U(F ) ≥ −1, ord 1
2
U(F ) ≥ −1, ord 1

3
U(F ) ≥ 1, ord 1

6
U(F ) ≥ 1

and U(F ) is holomorphic on H. We note that the poles of U(F ) only appear
at the cusps 0 and 1

2 . We define another eta-product

A := A(z) =
η4(3z)

η4(z)

η4(6z)

η4(2z)
.
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By Proposition 2.1, we find that A is in M0(Γ0(6)). Ligozat’s formula on the
orders of an eta-product gives

ord0A = −1, ord 1
2
A = −1, ord 1

3
A = 1, ord 1

6
A = 1

and A is holomorphic and non-zero elsewhere. Since the Riemann surface
(H ∪Q ∪ i∞)/Γ0(6) has genus 0, M0(Γ0(6)) has one generator as a field. The
orders of A show that U(F ) = cA . Since

F = q

∞∏
n=1

(1− q9n)(1− q18n)

(1− qn)(1− q2n)
= q + q2 + 3q3 + 4q4 + 9q5 + 12q6 + · · · ,

A = q

∞∏
n=1

(1− q3n)4(1− q6n)4

(1− qn)4(1− q2n)4
= q + 4q2 + 18q3 + 52q4 + · · · .

So U(F ) = 3q + 12q2 + 54q3 + · · · . The comparison of the coefficients of U(f)
and A shows that c = 3, so U(F ) = 3A. On the other hand,

F = q

∞∏
n=1

(1− q9n)(1− q18n)

(1− qn)(1− q2n)
=

( ∞∑
n=1

a(n− 1)qn

) ∞∏
n=1

(1− q9n)(1− q18n).

Apply U -operator again on both sides of above, we have

(6) U(F ) = 3A =

( ∞∑
n=0

a(3n− 1)qn

) ∞∏
n=1

(1− q3n)(1− q6n).

Put

A = q
∞∏

n=1

(1− q3n)4(1− q6n)4

(1− qn)4(1− q2n)4

into above, we obtain the identity:
∞∑

n=0

a(3n+ 2)qn = 3
(q3; q3)3∞(q6; q6)3∞
(q; q)4∞(q2; q2)4∞

.(7)

Which is Theorem 1.1.

4. Closing remarks

We outline a proof of Theorem 1 in [2]. The ideal is similar to the paper [9].
Firstly we apply the Proposition 2.3 to Ai and FAi for i ≥ 1, we can express
Ai (resp. FAi) as a polynomial in A of degree at most 3i (resp. 3i+ 1). This
is the part corresponding to Proposition 1 and Proposition 2 in [2]. Next we
use the initial values of Ai to calculate the elementary symmetric functions σi

(i = 1, 2, 3) of U(A( z+t
3 )) (t = 0, 1, 2) which are polynomials in A with integers

as coefficients. Then by the Newton recurrence for power sums, we get for all
i ≥ 3

U(Ai) = σ1U(Ai−1)− σ2U(Ai−2) + σ3U(Ai−3).

Hence for i ≥ 1, U(Ai) ∈ Z[A]. Moreover U(FAi) satisfies the same recurrence
as U(Ai) also U(FAi) is in Z[A] and By induction we obtain the lower bounds
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of 3-adic orders of these coefficients. The last step is almost the same as
Proposition 3 and Theorem 4.
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