A SHORT PROOF OF AN IDENTITY FOR CUBIC PARTITION FUNCTION

Xinhua Xiong

Abstract. In this note, we will give a short proof of an identity for cubic partition function.

1. Introduction

Let $p(n)$ denote the number of the unrestricted partitions of n, defined by $\sum_{n=0}^{\infty} p(n) q^{n}=\prod_{n=0}^{\infty} \frac{1}{1-q^{n}}$. One of the celebrated results about $p(n)$ is the theorem which was proved by Watson [8]: if $k \geq 1$, then for every nonnegative integer n

$$
\begin{equation*}
p\left(5^{k} n+r_{k}\right) \equiv 0 \quad\left(\bmod 5^{k}\right) \tag{1}
\end{equation*}
$$

where r_{k} is the reciprocal modulo 5^{k} of 24 . Recently, the notion of cubic partitions of a natural number n, named by Kim [5], was introduced by Chan [1] in connection with Ramanujan's cubic continued fraction. By defintion, the generating function of the number of cubic partitions of n is

$$
\begin{equation*}
\sum_{n=0}^{\infty} a(n) q^{n}=\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{n}\right)\left(1-q^{2 n}\right)} \tag{2}
\end{equation*}
$$

Chan [1] from the Ramanujan's cubic continued fraction

$$
v(q):=\frac{q^{\frac{1}{3}}}{1}+\frac{q+q^{3}}{1}+\frac{q^{2}+q^{4}}{1}+\ldots \quad|q| \leq 1
$$

derived an elegant identity: let $x(q)=q^{-\frac{1}{3}} v(q)$, then

$$
\frac{1}{x(q)}-q^{\frac{1}{3}}-2 q^{\frac{2}{3}} x(q)=\frac{\left(q^{\frac{1}{3}} ; q^{\frac{1}{3}}\right)_{\infty}\left(q^{\frac{2}{3}} ; q^{\frac{2}{3}}\right)_{\infty}}{\left(q^{3} ; q^{3}\right)_{\infty}\left(q^{6} ; q^{6}\right)_{\infty}}
$$

where we set for $|q| \leq 1,(c ; q)_{\infty}:=\prod_{n=0}^{\infty}\left(1-c q^{k}\right)$. From this he obtained the generating function for $a(3 n+2)$ [1, Theorem 1]:

Received June 9, 2010.
2010 Mathematics Subject Classification. Primary 11F11, 11P83.
Key words and phrases. q-series identities, modular functions, cubic partition.

Theorem 1.1.

$$
\begin{equation*}
\sum_{n=0}^{\infty} a(3 n+2) q^{n}=3 \frac{\left(q^{3} ; q^{3}\right)_{\infty}^{3}\left(q^{6} ; q^{6}\right)_{\infty}^{3}}{(q ; q)_{\infty}^{4}\left(q^{2} ; q^{2}\right)_{\infty}^{4}} \tag{3}
\end{equation*}
$$

In this note, we will give a short proof of Theorem 1.1. The proof of Theorem 1.1 by Chan used identities involved Ramanujan's cubic continued fraction. Our proof depends on meromorphic modular functions on $\Gamma_{0}(6)$ and $\Gamma_{0}(18)$.

2. Preliminaries

Let $\mathbb{H}:=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$ denote the complex upper half plane, for a positive integer N, define the congruence subgroup $\Gamma_{0}(N)$ of $S L_{2}(\mathbb{Z})$ by $\Gamma_{0}(N):=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, c \equiv 0(\bmod N)\right\}$. Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$ act on the complex upper half plane by the linear fractional transformation $\gamma z:=\frac{a z+b}{c z+d}$. Let $f(z)$ be a function on \mathbb{H} which satisfies $f(\gamma z)=f(z)$, if $f(z)$ is meromorphic on \mathbb{H} and at all the cusps of $\Gamma_{0}(N)$, then we call $f(z)$ a meromorphic modular function with respect to $\Gamma_{0}(N)$. The set of all such functions is denoted by $\mathcal{M}_{0}\left(\Gamma_{0}(N)\right)$.

Dedekind's eta function is defined by $\eta(z):=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)$, where $q=$ $e^{2 \pi i z}$ and $\operatorname{Im}(z)>0$. A function $f(z)$ is called an eta-product if it can be written in the form of $f(z)=\prod_{\delta \mid N} \eta^{r_{\delta}}(\delta z)$, where N is a natural number and r_{δ} is an integer. The following proposition due to Gordon, Hughes [4] and Newman [7] which is useful to verify whether an eta-product is a modular function.

Proposition 2.1. If $f(z)=\prod_{\delta \mid N} \eta^{r_{\delta}}(\delta z)$ is an eta-product with $\frac{1}{2} \sum_{\delta \mid N} r_{\delta}=0$ satisfies the conditions:

$$
\sum_{\delta \mid N} \delta r_{\delta} \equiv 0(\bmod 24), \quad \sum_{\delta \mid N} \frac{N}{\delta} r_{\delta} \equiv 0(\bmod 24), \quad \prod_{\delta \mid N} \delta^{r_{\delta}} \in \mathbb{Q}^{2},
$$

then $f(z)$ is in $\mathcal{M}_{0}\left(\Gamma_{0}(N)\right)$.
The following proposition due to Ligozat [6] which gives the analytic orders of an eta-product at the cusps of $\Gamma_{0}(N)$.

Proposition 2.2. Let c, d and N be positive integers with $d \mid N$ and $(c, d)=1$. If $f(z)$ is an eta-product satisfying the conditions in Proposition 2.1 for N, then the order of vanishing of $f(z)$ at the cusp $\frac{c}{d}$ is

$$
\frac{N}{24} \sum_{\delta \mid N} \frac{(d, \delta)^{2} r_{\delta}}{\left(d, \frac{N}{d}\right) d \delta}
$$

Let p be a prime, and $f(q)=\sum_{n \geq n_{0}}^{\infty} a(n) q^{n}$ be a formal power series, we define $U_{p} f(q)=\sum_{p n \geq n_{0}} a(p n) q^{n}$. If $f(z) \in \mathcal{M}_{0}\left(\Gamma_{0}(N)\right)$, then $f(z)$ has an expansion at the point $i \infty$ of the form $f(z)=\sum_{n=n_{0}}^{\infty} a(n) q^{n}$ where $q=e^{2 \pi i z}$
and $\operatorname{Im}(z)>0$. We call this expansion the Fourier series of $f(z)$. Moreover we define $U_{p} f(z)$ to be the result of applying U_{p} to the Fourier series of $f(z)$.

We use the results on the U_{3}-operator (we write U for U_{3} in the following) acting on modular functions on $\mathcal{M}_{0}\left(\Gamma_{0}(6)\right)$ and $\mathcal{M}_{0}\left(\Gamma_{0}(18)\right)$ stated by Gordon and Hughes [4]. We know that $\Gamma_{0}(6)$ has 4 cusps, represented by $0, \frac{1}{2}, \frac{1}{3}, \frac{1}{6}(=i \infty), \Gamma_{0}(18)$ has 8 cusps, represented by $0, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{6}, \frac{5}{6}, \frac{1}{9}, \frac{1}{18}(=$ $i \infty)$. By Ligozat's formula on the analytic orders of an eta-product, if $f(z)$ is in $\mathcal{M}_{0}\left(\Gamma_{0}(N)\right)$, then $f(z)$ has the same order at the cusps which have the same denominators. The order of $U_{3}(f(z))$ at a cusp r of $\Gamma_{0}(6)$ is denoted by $\operatorname{ord}_{r} U(f)$, and the order of $f(z)$ at a cusp of s of $\Gamma_{0}(18)$ is denoted by ord $d_{s} f$.

Proposition 2.3. Let $f(z)$ be an eta-product in $\mathcal{M}_{0}\left(\Gamma_{0}(18)\right)$. Then $U_{3}(f(z))$ is in $\mathcal{M}_{0}\left(\Gamma_{0}(6)\right)$, and
(4) $\operatorname{ord}_{0} U(f) \geq \min \left(\right.$ ord $_{0} f$, ord $\left._{\frac{1}{3}} f\right)$, ord ${ }_{\frac{1}{2}} U(f) \geq \min \left(\right.$ ord $_{\frac{1}{2}} f$, ord $\left._{\frac{1}{6}} f\right)$,
(5) $\operatorname{ord}_{\frac{1}{3}} U(f) \geq \frac{1}{3} \operatorname{ord}_{\frac{1}{9}} f, \quad \operatorname{ord}_{\frac{1}{6}} U(f) \geq \frac{1}{3} \operatorname{ord}_{\frac{1}{18}} f$.

Moreover, $U(f)$ has no poles on \mathbb{H} except the cusps.

3. Proof of Theorem 1.1

Let the eta-product

$$
F:=F(z)=\frac{\eta(9 z)}{\eta(z)} \frac{\eta(18 z)}{\eta(2 z)},
$$

put $N=18$, we find that $F(z)$ satisfies the conditions of Newman-GordonHughes's theorem, i.e., Proposition 2.1, so $F(z)$ is in $\mathcal{M}_{0}\left(\Gamma_{0}(18)\right)$. We use Ligozat's formula to calculate the orders of $F(z)$ at the cusps $\frac{c}{d}$, for $d=$ $1,2,3,6,9,18$. We give the calculation of the case of $d=1$ as an example:

$$
\begin{aligned}
\operatorname{ord}_{0} F & =\frac{18}{24 \times\left(1, \frac{18}{1}\right)} \sum_{\delta \mid 18} \frac{(1, \delta)^{2}}{\delta} r_{\delta} \\
& =\frac{18}{24} \times\left(\frac{(1,9)^{2}}{9} \times 1+\frac{(1,18)^{2}}{18} \times 1+\frac{(1,1)^{2}}{1} \times(-1)+\frac{(1,2)^{2}}{2} \times(-1)\right) \\
& =-1
\end{aligned}
$$

Similar calculations give

$$
\operatorname{ord}_{\frac{1}{2}} F=-1, \quad \operatorname{ord}_{\frac{1}{3}} F=0, \quad \operatorname{ord}_{\frac{1}{6}} F=0, \quad \text { ord }_{\frac{1}{9}} F=1, \quad \text { ord }_{\frac{1}{18}} F=1 .
$$

By Proposition 2.3, the orders of $U(F)$ at the cusps of $\Gamma_{0}(6)$ satisfy

$$
\operatorname{ord}_{0} U(F) \geq-1, \quad \operatorname{ord}_{\frac{1}{2}} U(F) \geq-1, \quad \operatorname{ord}_{\frac{1}{3}} U(F) \geq 1, \quad \operatorname{ord}_{\frac{1}{6}} U(F) \geq 1
$$

and $U(F)$ is holomorphic on \mathbb{H}. We note that the poles of $U(F)$ only appear at the cusps 0 and $\frac{1}{2}$. We define another eta-product

$$
A:=A(z)=\frac{\eta^{4}(3 z)}{\eta^{4}(z)} \frac{\eta^{4}(6 z)}{\eta^{4}(2 z)}
$$

By Proposition 2.1, we find that A is in $\mathcal{M}_{0}\left(\Gamma_{0}(6)\right)$. Ligozat's formula on the orders of an eta-product gives

$$
\operatorname{ord}_{0} A=-1, \quad \operatorname{ord}_{\frac{1}{2}} A=-1, \operatorname{ord}_{\frac{1}{3}} A=1, \quad \operatorname{ord}_{\frac{1}{6}} A=1
$$

and A is holomorphic and non-zero elsewhere. Since the Riemann surface $(\mathbb{H} \cup \mathbb{Q} \cup i \infty) / \Gamma_{0}(6)$ has genus $0, \mathcal{M}_{0}\left(\Gamma_{0}(6)\right)$ has one generator as a field. The orders of A show that $U(F)=c A$. Since

$$
\begin{aligned}
& F=q \prod_{n=1}^{\infty} \frac{\left(1-q^{9 n}\right)\left(1-q^{18 n}\right)}{\left(1-q^{n}\right)\left(1-q^{2 n}\right)}=q+q^{2}+3 q^{3}+4 q^{4}+9 q^{5}+12 q^{6}+\cdots \\
& A=q \prod_{n=1}^{\infty} \frac{\left(1-q^{3 n}\right)^{4}\left(1-q^{6 n}\right)^{4}}{\left(1-q^{n}\right)^{4}\left(1-q^{2 n}\right)^{4}}=q+4 q^{2}+18 q^{3}+52 q^{4}+\cdots
\end{aligned}
$$

So $U(F)=3 q+12 q^{2}+54 q^{3}+\cdots$. The comparison of the coefficients of $U(f)$ and A shows that $c=3$, so $U(F)=3 A$. On the other hand,

$$
F=q \prod_{n=1}^{\infty} \frac{\left(1-q^{9 n}\right)\left(1-q^{18 n}\right)}{\left(1-q^{n}\right)\left(1-q^{2 n}\right)}=\left(\sum_{n=1}^{\infty} a(n-1) q^{n}\right) \prod_{n=1}^{\infty}\left(1-q^{9 n}\right)\left(1-q^{18 n}\right)
$$

Apply U-operator again on both sides of above, we have

$$
\begin{equation*}
U(F)=3 A=\left(\sum_{n=0}^{\infty} a(3 n-1) q^{n}\right) \prod_{n=1}^{\infty}\left(1-q^{3 n}\right)\left(1-q^{6 n}\right) \tag{6}
\end{equation*}
$$

Put

$$
A=q \prod_{n=1}^{\infty} \frac{\left(1-q^{3 n}\right)^{4}\left(1-q^{6 n}\right)^{4}}{\left(1-q^{n}\right)^{4}\left(1-q^{2 n}\right)^{4}}
$$

into above, we obtain the identity:

$$
\begin{equation*}
\sum_{n=0}^{\infty} a(3 n+2) q^{n}=3 \frac{\left(q^{3} ; q^{3}\right)_{\infty}^{3}\left(q^{6} ; q^{6}\right)_{\infty}^{3}}{(q ; q)_{\infty}^{4}\left(q^{2} ; q^{2}\right)_{\infty}^{4}} \tag{7}
\end{equation*}
$$

Which is Theorem 1.1.

4. Closing remarks

We outline a proof of Theorem 1 in [2]. The ideal is similar to the paper [9]. Firstly we apply the Proposition 2.3 to A^{i} and $F A^{i}$ for $i \geq 1$, we can express A^{i} (resp. $F A^{i}$) as a polynomial in A of degree at most $3 i$ (resp. $3 i+1$). This is the part corresponding to Proposition 1 and Proposition 2 in [2]. Next we use the initial values of A^{i} to calculate the elementary symmetric functions σ_{i} $(i=1,2,3)$ of $U\left(A\left(\frac{z+t}{3}\right)\right)(t=0,1,2)$ which are polynomials in A with integers as coefficients. Then by the Newton recurrence for power sums, we get for all $i \geq 3$

$$
U\left(A^{i}\right)=\sigma_{1} U\left(A^{i-1}\right)-\sigma_{2} U\left(A^{i-2}\right)+\sigma_{3} U\left(A^{i-3}\right) .
$$

Hence for $i \geq 1, U\left(A^{i}\right) \in \mathbb{Z}[A]$. Moreover $U\left(F A^{i}\right)$ satisfies the same recurrence as $U\left(A^{i}\right)$ also $U\left(F A^{i}\right)$ is in $\mathbb{Z}[A]$ and By induction we obtain the lower bounds
of 3 -adic orders of these coefficients. The last step is almost the same as Proposition 3 and Theorem 4.

References

[1] H.-C. Chan, Ramanujan's cubic continued fraction and an analog of his "most beautiful identity", Int. J. Number Theory 6 (2010), no. 3, 673-680.
[2] _ Ramanujan's cubic continued fraction and Ramanujan type congruences for a ceratin partition function, Int. J. Number Theory, 6 (2010), no. 4, 819-834.
[3] , A new proof of two identities involving Ramanujan's cubic continued fraction, Ramanujan J. 21 (2010), no. 2, 173-180.
[4] B. Gordon and K. Hughies, Ramanujan congruence for $q(n)$, Analytic number theory (Philadelphia, Pa., 1980), pp. 333-359, Lecture Notes in Math., 899, Springer, BerlinNew York, 1981.
[5] B. Kim, A crank analog on a certain kind of partition function arising from the cubic continued fraction, preprint, 2008.
[6] G. Ligozat, Courbes modulaires de genre 1, Mémoires de la Société Mathématique de France 43 (1975), 5-80.
[7] M. Newman, Constructions and applications of a class of modular functions II, Proc. London Math. Soc. (3) 9 (1959), 373-381.
[8] G. N. Watson, Beweis von Ramanujans Vermutungen über Zerfällungsanzahlen, J. Reine und Angew. Math. 179 (1938), 97-128.
[9] X. H. Xiong, Cubic partition modulo powers of 5, arXiv:math.NT/1004.4737.

Department of Mathematics

China Three Gorges University
Yichang 443002, P. R. China
E-mail address: xinhuaxiong@ctgu.edu.cn

