Commun. Korean Math. Soc. **26** (2011), No. 4, pp. 551–555 http://dx.doi.org/10.4134/CKMS.2011.26.4.551

A SHORT PROOF OF AN IDENTITY FOR CUBIC PARTITION FUNCTION

XINHUA XIONG

ABSTRACT. In this note, we will give a short proof of an identity for cubic partition function.

1. Introduction

Let p(n) denote the number of the unrestricted partitions of n, defined by $\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=0}^{\infty} \frac{1}{1-q^n}$. One of the celebrated results about p(n) is the theorem which was proved by Watson [8]: if $k \ge 1$, then for every nonnegative integer n

(1)
$$p(5^k n + r_k) \equiv 0 \pmod{5^k},$$

where r_k is the reciprocal modulo 5^k of 24. Recently, the notion of cubic partitions of a natural number n, named by Kim [5], was introduced by Chan [1] in connection with Ramanujan's cubic continued fraction. By definition, the generating function of the number of cubic partitions of n is

(2)
$$\sum_{n=0}^{\infty} a(n)q^n = \prod_{n=1}^{\infty} \frac{1}{(1-q^n)(1-q^{2n})}$$

Chan [1] from the Ramanujan's cubic continued fraction

$$v(q) := \frac{q^{\frac{1}{3}}}{1} + \frac{q + q^3}{1} + \frac{q^2 + q^4}{1} + \dots \qquad |q| \le 1$$

derived an elegant identity: let $x(q) = q^{-\frac{1}{3}}v(q)$, then

$$\frac{1}{x(q)} - q^{\frac{1}{3}} - 2q^{\frac{2}{3}}x(q) = \frac{(q^{\frac{1}{3}}; q^{\frac{1}{3}})_{\infty}(q^{\frac{4}{3}}; q^{\frac{4}{3}})_{\infty}}{(q^3; q^3)_{\infty}(q^6; q^6)_{\infty}},$$

where we set for $|q| \leq 1$, $(c;q)_{\infty} := \prod_{n=0}^{\infty} (1 - cq^k)$. From this he obtained the generating function for a(3n+2) [1, Theorem 1]:

©2011 The Korean Mathematical Society

Received June 9, 2010.

²⁰¹⁰ Mathematics Subject Classification. Primary 11F11, 11P83.

Key words and phrases. q-series identities, modular functions, cubic partition.

Theorem 1.1.

(3)
$$\sum_{n=0}^{\infty} a(3n+2)q^n = 3 \frac{(q^3; q^3)_{\infty}^3 (q^6; q^6)_{\infty}^3}{(q; q)_{\infty}^4 (q^2; q^2)_{\infty}^4}.$$

In this note, we will give a short proof of Theorem 1.1. The proof of Theorem 1.1 by Chan used identities involved Ramanujan's cubic continued fraction. Our proof depends on meromorphic modular functions on $\Gamma_0(6)$ and $\Gamma_0(18)$.

2. Preliminaries

Let $\mathbb{H} := \{z \in \mathbb{C} | \operatorname{Im}(z) > 0\}$ denote the complex upper half plane, for a positive integer N, define the congruence subgroup $\Gamma_0(N)$ of $SL_2(\mathbb{Z})$ by $\Gamma_0(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| c \equiv 0 \pmod{N} \right\}$. Let $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ act on the complex upper half plane by the linear fractional transformation $\gamma z := \frac{az+b}{cz+d}$. Let f(z) be a function on \mathbb{H} which satisfies $f(\gamma z) = f(z)$, if f(z) is meromorphic on \mathbb{H} and at all the cusps of $\Gamma_0(N)$, then we call f(z) a meromorphic modular function with respect to $\Gamma_0(N)$. The set of all such functions is denoted by $\mathcal{M}_0(\Gamma_0(N))$.

Dedekind's eta function is defined by $\eta(z) := q^{\frac{1}{24}} \prod_{n=1}^{\infty} (1-q^n)$, where $q = e^{2\pi i z}$ and $\operatorname{Im}(z) > 0$. A function f(z) is called an eta-product if it can be written in the form of $f(z) = \prod_{\delta \mid N} \eta^{r_{\delta}}(\delta z)$, where N is a natural number and r_{δ} is an integer. The following proposition due to Gordon, Hughes [4] and Newman [7] which is useful to verify whether an eta-product is a modular function.

Proposition 2.1. If $f(z) = \prod_{\delta \mid N} \eta^{r_{\delta}}(\delta z)$ is an eta-product with $\frac{1}{2} \sum_{\delta \mid N} r_{\delta} = 0$ satisfies the conditions:

....

$$\sum_{\delta|N} \delta r_{\delta} \equiv 0 \pmod{24}, \quad \sum_{\delta|N} \frac{N}{\delta} r_{\delta} \equiv 0 \pmod{24}, \quad \prod_{\delta|N} \delta^{r_{\delta}} \in \mathbb{Q}^2,$$

then f(z) is in $\mathcal{M}_0(\Gamma_0(N))$.

The following proposition due to Ligozat [6] which gives the analytic orders of an eta-product at the cusps of $\Gamma_0(N)$.

Proposition 2.2. Let c, d and N be positive integers with d|N and (c, d) = 1. If f(z) is an eta-product satisfying the conditions in Proposition 2.1 for N, then the order of vanishing of f(z) at the cusp $\frac{c}{d}$ is

$$\frac{N}{24} \sum_{\delta \mid N} \frac{(d,\delta)^2 r_{\delta}}{(d,\frac{N}{d}) d\delta}.$$

Let p be a prime, and $f(q) = \sum_{n \ge n_0}^{\infty} a(n)q^n$ be a formal power series, we define $U_p f(q) = \sum_{pn \ge n_0} a(pn)q^n$. If $f(z) \in \mathcal{M}_0(\Gamma_0(N))$, then f(z) has an expansion at the point $i\infty$ of the form $f(z) = \sum_{n=n_0}^{\infty} a(n)q^n$ where $q = e^{2\pi i z}$

552

and Im(z) > 0. We call this expansion the Fourier series of f(z). Moreover we define $U_p f(z)$ to be the result of applying U_p to the Fourier series of f(z).

We use the results on the U_3 -operator (we write U for U_3 in the following) acting on modular functions on $\mathcal{M}_0(\Gamma_0(6))$ and $\mathcal{M}_0(\Gamma_0(18))$ stated by Gordon and Hughes [4]. We know that $\Gamma_0(6)$ has 4 cusps, represented by $0, \frac{1}{2}, \frac{1}{3}, \frac{1}{6}(=i\infty), \Gamma_0(18)$ has 8 cusps, represented by $0, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{6}, \frac{5}{6}, \frac{1}{9}, \frac{1}{18}(=i\infty)$. By Ligozat's formula on the analytic orders of an eta-product, if f(z)is in $\mathcal{M}_0(\Gamma_0(N))$, then f(z) has the same order at the cusps which have the same denominators. The order of $U_3(f(z))$ at a cusp r of $\Gamma_0(6)$ is denoted by $ord_r U(f)$, and the order of f(z) at a cusp of s of $\Gamma_0(18)$ is denoted by $ord_s f$.

Proposition 2.3. Let f(z) be an eta-product in $\mathcal{M}_0(\Gamma_0(18))$. Then $U_3(f(z))$ is in $\mathcal{M}_0(\Gamma_0(6))$, and

- (4) $ord_0U(f) \geq \min\left(ord_0f, ord_{\frac{1}{3}}f\right), \ ord_{\frac{1}{2}}U(f) \geq \min\left(ord_{\frac{1}{2}}f, ord_{\frac{1}{6}}f\right),$
- $(5) \ ord_{\frac{1}{3}}U(f) \ \geq \ \frac{1}{3}ord_{\frac{1}{9}}f, \qquad \qquad ord_{\frac{1}{6}}U(f) \geq \frac{1}{3}ord_{\frac{1}{18}}f.$

Moreover, U(f) has no poles on \mathbb{H} except the cusps.

3. Proof of Theorem 1.1

Let the eta-product

$$F := F(z) = \frac{\eta(9z)}{\eta(z)} \frac{\eta(18z)}{\eta(2z)},$$

put N = 18, we find that F(z) satisfies the conditions of Newman-Gordon-Hughes's theorem, i.e., Proposition 2.1, so F(z) is in $\mathcal{M}_0(\Gamma_0(18))$. We use Ligozat's formula to calculate the orders of F(z) at the cusps $\frac{c}{d}$, for d = 1, 2, 3, 6, 9, 18. We give the calculation of the case of d = 1 as an example:

$$ord_0 F = \frac{18}{24 \times (1, \frac{18}{1})} \sum_{\delta \mid 18} \frac{(1, \delta)^2}{\delta} r_\delta$$

= $\frac{18}{24} \times \left(\frac{(1, 9)^2}{9} \times 1 + \frac{(1, 18)^2}{18} \times 1 + \frac{(1, 1)^2}{1} \times (-1) + \frac{(1, 2)^2}{2} \times (-1) \right)$
= $-1.$

Similar calculations give

$$ord_{\frac{1}{2}}F = -1, \quad ord_{\frac{1}{3}}F = 0, \quad ord_{\frac{1}{6}}F = 0, \quad ord_{\frac{1}{9}}F = 1, \quad ord_{\frac{1}{18}}F = 1.$$

By Proposition 2.3, the orders of U(F) at the cusps of $\Gamma_0(6)$ satisfy

$$ord_0U(F) \ge -1, \quad ord_{\frac{1}{2}}U(F) \ge -1, \quad ord_{\frac{1}{3}}U(F) \ge 1, \quad ord_{\frac{1}{6}}U(F) \ge 1$$

and U(F) is holomorphic on \mathbb{H} . We note that the poles of U(F) only appear at the cusps 0 and $\frac{1}{2}$. We define another eta-product

$$A := A(z) = \frac{\eta^4(3z)}{\eta^4(z)} \frac{\eta^4(6z)}{\eta^4(2z)}.$$

By Proposition 2.1, we find that A is in $\mathcal{M}_0(\Gamma_0(6))$. Ligozat's formula on the orders of an eta-product gives

$$rd_0A = -1, \quad ord_{\frac{1}{2}}A = -1, ord_{\frac{1}{3}}A = 1, \quad ord_{\frac{1}{6}}A = 1$$

and A is holomorphic and non-zero elsewhere. Since the Riemann surface $(\mathbb{H} \cup \mathbb{Q} \cup i\infty)/\Gamma_0(6)$ has genus 0, $\mathcal{M}_0(\Gamma_0(6))$ has one generator as a field. The orders of A show that U(F) = cA. Since

$$F = q \prod_{n=1}^{\infty} \frac{(1-q^{9n})(1-q^{18n})}{(1-q^n)(1-q^{2n})} = q + q^2 + 3q^3 + 4q^4 + 9q^5 + 12q^6 + \cdots,$$

$$A = q \prod_{n=1}^{\infty} \frac{(1-q^{3n})^4(1-q^{6n})^4}{(1-q^n)^4(1-q^{2n})^4} = q + 4q^2 + 18q^3 + 52q^4 + \cdots.$$

So $U(F) = 3q + 12q^2 + 54q^3 + \cdots$. The comparison of the coefficients of U(f)and A shows that c = 3, so U(F) = 3A. On the other hand,

$$F = q \prod_{n=1}^{\infty} \frac{(1-q^{9n})(1-q^{18n})}{(1-q^n)(1-q^{2n})} = \left(\sum_{n=1}^{\infty} a(n-1)q^n\right) \prod_{n=1}^{\infty} (1-q^{9n})(1-q^{18n}).$$

Apply U-operator again on both sides of above, we have

(6)
$$U(F) = 3A = \left(\sum_{n=0}^{\infty} a(3n-1)q^n\right) \prod_{n=1}^{\infty} (1-q^{3n})(1-q^{6n})$$

Put

$$A = q \prod_{n=1}^{\infty} \frac{(1-q^{3n})^4 (1-q^{6n})^4}{(1-q^n)^4 (1-q^{2n})^4}$$

into above, we obtain the identity:

(7)
$$\sum_{n=0}^{\infty} a(3n+2)q^n = 3 \frac{(q^3; q^3)_{\infty}^3 (q^6; q^6)_{\infty}^3}{(q; q)_{\infty}^4 (q^2; q^2)_{\infty}^4}.$$

Which is Theorem 1.1.

4. Closing remarks

We outline a proof of Theorem 1 in [2]. The ideal is similar to the paper [9]. Firstly we apply the Proposition 2.3 to A^i and FA^i for $i \ge 1$, we can express A^i (resp. FA^i) as a polynomial in A of degree at most 3i (resp. 3i + 1). This is the part corresponding to Proposition 1 and Proposition 2 in [2]. Next we use the initial values of A^i to calculate the elementary symmetric functions σ_i (i = 1, 2, 3) of $U(A(\frac{z+t}{3}))$ (t = 0, 1, 2) which are polynomials in A with integers as coefficients. Then by the Newton recurrence for power sums, we get for all $i \ge 3$

$$U(A^{i}) = \sigma_1 U(A^{i-1}) - \sigma_2 U(A^{i-2}) + \sigma_3 U(A^{i-3}).$$

Hence for $i \geq 1$, $U(A^i) \in \mathbb{Z}[A]$. Moreover $U(FA^i)$ satisfies the same recurrence as $U(A^i)$ also $U(FA^i)$ is in $\mathbb{Z}[A]$ and By induction we obtain the lower bounds

0

- -

of 3-adic orders of these coefficients. The last step is almost the same as Proposition 3 and Theorem 4.

References

- H.-C. Chan, Ramanujan's cubic continued fraction and an analog of his "most beautiful identity", Int. J. Number Theory 6 (2010), no. 3, 673–680.
- [2] _____, Ramanujan's cubic continued fraction and Ramanujan type congruences for a ceratin partition function, Int. J. Number Theory, 6 (2010), no. 4, 819–834.
- [3] _____, A new proof of two identities involving Ramanujan's cubic continued fraction, Ramanujan J. 21 (2010), no. 2, 173–180.
- [4] B. Gordon and K. Hughies, Ramanujan congruence for q(n), Analytic number theory (Philadelphia, Pa., 1980), pp. 333–359, Lecture Notes in Math., 899, Springer, Berlin-New York, 1981.
- [5] B. Kim, A crank analog on a certain kind of partition function arising from the cubic continued fraction, preprint, 2008.
- [6] G. Ligozat, Courbes modulaires de genre 1, Mémoires de la Société Mathématique de France 43 (1975), 5–80.
- M. Newman, Constructions and applications of a class of modular functions II, Proc. London Math. Soc. (3) 9 (1959), 373–381.
- [8] G. N. Watson, Beweis von Ramanujans Vermutungen über Zerfällungsanzahlen, J. Reine und Angew. Math. 179 (1938), 97–128.
- [9] X. H. Xiong, Cubic partition modulo powers of 5, arXiv:math.NT/1004.4737.

DEPARTMENT OF MATHEMATICS CHINA THREE GORGES UNIVERSITY YICHANG 443002, P. R. CHINA *E-mail address*: xinhuaxiong@ctgu.edu.cn