DOI QR코드

DOI QR Code

초고성능 시멘트 복합체의 초기 재령 구속 수축 및 인장 크리프 특성

Characteristics of Early-Age Restrained Shrinkage and Tensile Creep of Ultra-High Performance Cementitious Composites (UHPCC)

  • 류두열 (고려대학교 건축사회환경공학부) ;
  • 박정준 (한국건설기술연구원 구조교량연구실) ;
  • 김성욱 (한국건설기술연구원 구조교량연구실) ;
  • 윤영수 (고려대학교 건축사회환경공학부)
  • Yoo, Doo-Yeol (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Park, Jung-Jun (Structural Engineering & Bridges Research Division, Korea Institute of Construction Technology) ;
  • Kim, Sung-Wook (Structural Engineering & Bridges Research Division, Korea Institute of Construction Technology) ;
  • Yoon, Young-Soo (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 투고 : 2011.02.28
  • 심사 : 2011.06.07
  • 발행 : 2011.10.31

초록

초고성능 시멘트 복합체(ultra-high-performance cementitious conposites, UHPCC)는 우수한 압축강도와 연성을 나타내기 때문에 구조 부재 적용 시 단면을 상당히 감소시키고, 낮은 물-결합재비와 고분말 혼화 재료의 사용으로 높은 수축 변형률이 발생하게 되어 거푸집 및 보강근 등의 구속에 의한 수축 균열의 발생 가능성이 크다. 그러므로 이 연구에서는 UHPCC의 수축을 저감시키기 위한 방법으로 팽창재와 수축 저감제를 조합하여 혼입하고 자유수축과 구속 수축 거동을 평가하여 적합성 여부를 산정하였다. 실험 결과 팽창재와 수축 저감제를 조합하여 혼입한 경우에 약 40~44%의 자유수축 저감 효과를 보였으며, 잔류 인장응력은 약 35%와 47% 감소하였다. 지속적인 구속 하중에 의한 인장 크리프의 발생으로 탄성 수축 응력의 약 61%, 64%가 이완되는 것으로 나타났으며, 따라서 구속 수축 거동을 평가할 때에는 반드시 크리프 효과를 고려해야 한다고 판단되었다. 구속도는 0.78~0.85로 나타났으며 팽창재와 수축 저감제의 혼입에 의한 영향은 미미하였고 콘크리트 링의 두께가 클수록 감소하는 경향을 보였다. 또한, UHPCC의 인장 크리프 변형률을 측정하고 재령에 따라 변하는 구속 하중을 적용한 4-매개 변수 크리프 예측 모델과 비교하였다.

Since ultra-high performance cementitious composites (UHPCC) not only represents high early age shrinkage strain due to its low water-to-binder ratio (W/B) and high fineness admixture usage but also reduces the cross section of structure from the higher mechanical properties, it generally has more shrinkage cracks from the restraints of formwork and reinforcing bars. In this study, free and restrained shrinkage experiments were conducted to evaluate the suitability of incorporating both expansive admixture (EA) and shrinkage reducing agent (SRA). The test results indi-cated that approximately 40~44% of free shrinkage strain was decreased. Also, the results showed that 35% and 47% of residual tensile stresses were relieved by synergetic effect of SRA and EA, respectively. Residual tensile stresses from ringtest were relaxed by approximately 61% and 64% of elastic shrinkage stresses due to SRA and EA, respectively, because of the tensile creep effect. Therefore, the creep effect should be considered to precisely estimate the restrained shrinkage behavior of concrete structures. The degree of restraint of UHPCC was approximately in the range of 0.78~0.85. The addition of combined EA and SRA showed minute influence on the degree of restraint. However, the effect decreased when thicker concrete ring was used. Tensile creep strains were measured and compared to the predicted values from 4-parametric prediction model considering time dependent restrained forces.

키워드

참고문헌

  1. 김성욱, 강수태, 한상묵, "초고성능 시멘트 복합재의 특성 및 활용 현황," 콘크리트학회지, 18권, 1호, 2006, pp. 16-21.
  2. Maltese, C., Pistolesi, C., Lolli, A., Bravo, A., Cerulli, T., and Salvioni, D., "Combined Effect of Expansive and Shrinkage Reducing Admixtures to Obtain Stable and Durable Mortars," Cement and Concrete Research, Vol. 35, No. 12, 2005, pp. 2244-2251. https://doi.org/10.1016/j.cemconres.2004.11.021
  3. 한천구, 김성욱, 고경택, 한민철, "팽창재와 수축 저감제를 조합 사용한 고성능 콘크리트의 기초 물성 및 수축 특성," 콘크리트학회 논문집, 16권, 5호, 2004, pp. 605-612.
  4. 윤성원, 노재성, "산업 폐기물을 이용한 CSA계 팽창재 제조 및 응용," 콘크리트학회 논문집, 16권, 3호, 2004, pp. 369-374.
  5. Bentz, D. P., "Influence of Shrinkage-Reducing Admixtures on Early-Age Properties of Cement Pastes," Journal of Advanced Concrete Technology, Vol. 4, No. 3, 2006, pp. 423-429. https://doi.org/10.3151/jact.4.423
  6. 류두열, 민경환, 양준모, 윤영수, "초고강도 콘크리트의 수축 거동 및 구속도 평가," 콘크리트학회 논문집, 22권, 5호, 2010, pp. 641-650.
  7. See, H. T., Attiogbe, E. K., and Miltenberger, M. A., "Shrinkage Cracking Characteristics of Concrete Using Ring Specimens," ACI Materials Journal, Vol. 100, No. 3, 2003, pp. 239-245.
  8. Weiss, W. J., "Prediction of Early-Age Shrinkage Cracking in Concrete," PhD Dissertation, Northwestern University, Evanston, 1999, 277 pp.
  9. Mehta, P. K. and Monteiro, P. J. M., Concrete, 3rd edn. McGraw Hill, 2006.
  10. Hossain, A. B. and Weiss, W. J., "Assessing Residual Stress Development and Stress Relaxation in Restrained Concrete Ring Specimens," Cement and Concrete Composites, Vol. 26, No. 5, 2004, pp. 531-540. https://doi.org/10.1016/S0958-9465(03)00069-6
  11. 차수원, 김기현, 김성욱, 박정준, 배성근, "초고성능 콘크리트의 수화발열 및 역학적 특성 모델," 콘크리트학회 논문집, 22권, 3호, 2010, pp. 389-397. https://doi.org/10.4334/JKCI.2010.22.3.389
  12. Bazant, Z. P. and Carol, I., "Viscoelasticity with Aging Caused by Solidification of Non-Aging Constituent," Journal of Engineering Mechanics, ASCE, Vol. 119, No. 11, 1993, pp. 2252-2269. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:11(2252)
  13. Mabrouk, R., Ishida, T., and Maekawa, K., "Solidification Model of Hardening Concrete Composite for Predicting Autogenous and Drying Shrinkage," In: E. Tazawa Ed., Autogenous Shrinkage of Concrete, E&FN Spon, London, 1998, pp. 309-318.
  14. 이창수, 김현겸, "콘크리트 크리프 변형 예측을 위한 비선형 4-매개변수 모델의 제안," 대한토목학회 논문집, 26권, 1A호, 2006, pp. 45-54.
  15. Burgers, J. M., First Report on Viscosity and Plasticity, Nordemann Publisher, Amsterdam, 1935.
  16. Mazloom, M., "Estimating Long-Term Creep and Shrinkage of High-Strength Concrete," Cement and Concrete Composite, 2007, Vol. 30, No. 4, pp. 316-326.

피인용 문헌

  1. Tensile Stress-Crack Opening Relationship of Ultra High Performance Cementitious Composites(UHPCC) Used for Bridge Decks vol.17, pp.1, 2013, https://doi.org/10.11112/jksmi.2013.17.1.046
  2. Shrinkage Reduction Performance of HPFRCC Using Expansive and Srhinkage Reducing Admixtures vol.18, pp.5, 2014, https://doi.org/10.11112/jksmi.2014.18.5.034
  3. Technical Relevance of Polymer/Cement/Carbon Nanotube Composite: Opportunities and Challenges vol.55, pp.16, 2016, https://doi.org/10.1080/03602559.2016.1163608