DOI QR코드

DOI QR Code

산화물 환원공정에 의해 제조된 Bi2Te2.7Se0.3 분말의 열전특성

Thermoelectric Properties of Bi2Te2.7Se0.3 Powder Synthesized by an Oxide-Reduction Process

  • Park, Bae-Gun (Division of Materials Science and Engineering, Pukyong National University) ;
  • Lee, Gil-Geun (Division of Materials Science and Engineering, Pukyong National University) ;
  • Kim, Woo-Yeol (Division of Materials Science and Engineering, Pukyong National University) ;
  • Ha, Gook-Hyun (Korea Institute of Materials Science)
  • 투고 : 2011.07.27
  • 심사 : 2011.09.02
  • 발행 : 2011.10.28

초록

The present study focused on the synthesis of Bi-Te-Se-based powder by an oxide-reduction process, and analysis of the thermoelectric properties of the synthesized powder. The phase structure, chemical composition, and morphology of the synthesized powder were analyzed by XRD, EPMA and SEM. The synthesized powder was sintered by spark plasma sintering. The thermoelectric properties of the sintered body were evaluated by measuring its Seebeck coefficient, electrical resistivity, and thermal conductivity. $Bi_2Te_{2.7}Se_{0.3}$ powder was synthesized from a mixture of $Bi_2O_3$, $TeO_2$, and $SeO_2$ powders by mechanical milling, calcination, and reduction. The sintered body of the synthesized powder exhibited n-type thermoelectric characteristics. The thermoelectric properties of the sintered bodies depend on the reduction temperature. The Seebeck coefficient and electrical resistivity of the sintered body were increased with increasing reduction temperature. The sintered body of the $Bi_2Te_{2.7}Se_{0.3}$ powder synthesized at $360^{\circ}C$ showed about 0.5 of the figure of merit (ZT) at room temperature.

키워드

참고문헌

  1. A. Majumdar: Sci., 303 (2004) 777. https://doi.org/10.1126/science.1093164
  2. C. B. Vining: Nature, 413 (2001) 577. https://doi.org/10.1038/35098159
  3. B. C. Sales: Sci., 295 (2002) 1248. https://doi.org/10.1126/science.1069895
  4. K. Uemura and I. Nishida: Thermoelectric Semiconductor and its Application, Nikkankougyo Shinbunsya, Tokyo (1985) 13.
  5. H. Scherrer and S. Scherrer: CRC Handbook of Thermoelectrics, D. M. Rowe (Ed.), CRC Press, New York (1995) 211.
  6. Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen and Z. Ren: Nano Lett., 8 (2008) 2580. https://doi.org/10.1021/nl8009928
  7. B. Poudel, Q. Hao, J. Liu and M. S. Dresselhaus: Sci., 320 (2008) 634. https://doi.org/10.1126/science.1156446
  8. W. Xie, X. Tang, Y. Yan, Q. Zhang and T. M. Tritt: App. Phys. Lett., 94 (2009) 102111. https://doi.org/10.1063/1.3097026
  9. Y. Xu, Z. Ren, W. Ren, K. Deng and Y. Zhong: Mater. Lett., 62 (2008) 763. https://doi.org/10.1016/j.matlet.2007.06.064
  10. J. J. Ritter and P. Maruthamuthu: Inorg. Chem., 34 (1995) 4278. https://doi.org/10.1021/ic00120a040
  11. J. J. Ritter and P. Maruthamuthu: Inorg. Chem., 36 (1997) 260. https://doi.org/10.1021/ic960616i
  12. T. Sun, X. B. Zhao, T. J. Zhu and J. P. Tu: Mater. Lett., 60 (2006) 2534. https://doi.org/10.1016/j.matlet.2006.01.033
  13. Y. Q. Cao, T. J. Zhu and X. B. Zhao: J. Alloy and Comp., 449 (2008) 109. https://doi.org/10.1016/j.jallcom.2006.01.116
  14. D. H. Kim and T. Mitani: J. Alloy and Comp., 399 (2005) 14. https://doi.org/10.1016/j.jallcom.2005.03.021
  15. G. G. Lee, D. Y. Lee and G. H. Ha: J. Korean Powder Metall. Inst., 15 (2008) 352 (Korean). https://doi.org/10.4150/KPMI.2008.15.5.352
  16. G. G. Lee, D. Y. Lee, G. H. Ha and G. T. Kim: J. Korean Powder Metall. Inst., 17 (2010) 336 (Korean). https://doi.org/10.4150/KPMI.2010.17.4.336
  17. G. G. Lee, B. G. Park, W. Y. Kim, K. T. Kim and G. H. Ha: Elec. Mater. Lett., 6 (2010) 123. https://doi.org/10.3365/eml.2010.09.123
  18. X. D. Liu and Y. H. Park: Mater. Trans., 43 (2003) 681.
  19. L. D. Zhao, B. P. Zhang, J. F. Li, H. L. Zhang and W. S. Liu: Solid State Sci., 10 (2008) 651. https://doi.org/10.1016/j.solidstatesciences.2007.10.022
  20. P. Y. Yu and M. Cardona: Fundamentals of Semiconductors (Physics and Materials Properties), Springer, New York (1995) 150.
  21. Y. M. Chiang, D. P. Birnie and W. D. Kingery: Physical Ceramics, John Wiley & Sons, New York (1996) 101.
  22. P. Pecheur and G. Toussaint: J. Phys. Chem. Solids, 53 (1992) 1067. https://doi.org/10.1016/0022-3697(92)90079-S
  23. Z. Stary, J. Navratil and T. Plechaoek: Proc. of the 15th ICT, (1994) 286.
  24. K. W. Cho and I. H. Kim: Mater. Lett., 59 (2005) 966. https://doi.org/10.1016/j.matlet.2004.10.074
  25. H. Scherrer and S. Scherrer: CRC Handbook of Thermoelectrics, D. M. Rowe (Ed.), CRC Press, New York, (1995) 19.
  26. K. J. Lee, J. W. Xu, C. H. Lim and W. S. Cho: Met. Mater. Int., 14 (2008) 433. https://doi.org/10.3365/met.mat.2008.08.433