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EXISTENCE OF PERIODIC SOLUTIONS FOR PLANAR

HAMILTONIAN SYSTEMS AT RESONANCE

Yong-In Kim

Abstract. The existence of periodic solutions for the planar Hamilton-
ian systems with positively homogeneous Hamiltonian is discussed. The
asymptotic expansion of the Poincaré map is calculated up to higher or-

der and some sufficient conditions for the existence of periodic solutions
are given in the case when the first order term of the Poincaré map is
identically zero.

1. Introduction

Consider the existence of periodic solutions for the following planar Hamil-
tonian systems:

(1) Ju′ = ∇H(u) + f(t),

where ′ = d/dt, J =
(
0−1
1 0

)
is the standard symplectic matrix, f = (f1, f2) :

R → L1[0, 2π] × L1[0, 2π] is 2π-periodic, and H ∈ C3(R2, R) is positive for
u ̸= 0 and positively homogeneous of degree 2, that is, we have

(2) H(λu) = λ2H(u) ∀u ∈ R2, λ > 0

and

(3) min
∥u∥=1

H(u) > 0.

There have been many authors who have considered the system (1) with
properties (2) and (3) (e.g., [7], [13]). Fonda [7] has discussed the existence of
periodic solutions and unbounded solutions of (1) at the same time, however,
Yang [13] has been inspired by the work of [7], and has focused only on the
existence of unbounded solutions of (1).

It is well known that under the conditions (2) and (3), the origin is an
isochronous center for the autonomous system

(4) Ju′ = ∇H(u),
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that is, all solutions of (4) are periodic with the same minimal period, denoted
by τ . Throughout this paper, the scalar product of two vectors a and b will be
denoted by ⟨a, b⟩.

The system (1) is said to be at resonance if the period 2π of the forcing
term f(t) is an integral multiple of τ , that is, 2π

τ ∈ N. Fonda [7] has already

shown that if the system (1) with f ∈ C(R, R2) is not at resonance, then (1)
has a 2π-periodic solution for any 2π-periodic forcing term f(t) (Theorem 1 in
[7]) and that if the system (1) is at resonance, then there is a f(t) such that
all solutions of (1) are unbounded (Theorem 2 in [7]). Moreover, by taking a
reference solution ϕ of the autonomous system (4) such that H(ϕ(t)) = 1

2 and
defining the τ -periodic function Φ(θ) by

Φ(θ) =

∫ 2π

0

⟨f(t), ϕ(t+ θ)⟩dt

he has shown that if (1) is at resonance with f ∈ C6 and Φ(θ) ̸= 0 for all
θ ∈ [0, τ ], then all solutions of (1) are bounded and hence (1) has a 2π-periodic
solution (Theorem 3 in [7]), and also that if (1) is at resonance and Φ(θ) has at
least four simple zeros in [0, τ ], then (1) has a 2π-periodic solution (Theorem
4 in [7]).

In this paper, it will turn out that the function Φ(θ) is nothing but the
first order term of the Poincaré mapping for the solutions of a certain equation
equivalent to (1). Here, a question arises naturally. What if the first order
term is identically zero? The purpose of this paper mainly aims at giving a
partial answer to this question.

As in [7], an example of the system (1) with the properties (2) and (3) can
be easily given by defining the Hamiltonian function on the unit circle and
identifying the vector on S1 with eiα. For instance, let

α1 < α2 < · · · < αn < αn+1 = α1 + 2π,

and A1, A2, . . . , An be symmetric positive definite matrices, and define the
Hamiltonian function such that

α ∈ [αk, αk+1] ⇒ H(eiα) =
1

2
⟨Ake

iα, eiα⟩, k = 1, 2, . . . , n,

where the matrices Ak are chosen so that ∇H is continuous. In this case, ∇H
is piecewise linear. If u is a solution of the autonomous system (4) denoted by
u(t) = r(t)eiα(t), then we have

α(t) ∈ [αk, αk+1] ⇒ α′(t) = −⟨Ake
iα(t), eiα(t)⟩.

Hence in this case, we have

τ =
n∑

k=1

∫ αk+1

αk

dα

⟨Akeiα, eiα⟩
.



EXISTENCE OF PERIODIC SOLUTIONS 1145

As a special case of the above example, let n = 2, α1 = π/2, α2 = 3π/2 and

A1 =

(
λ 0
0 1

)
, A2 =

(
µ 0
0 1

)
,

with λ > 0, µ > 0. Then the system (1) becomes

(5)
x′ = y + f2(t),
y′ = −λx+ + µx− − f1(t),

where x+ = max{x, 0} is the positive part of x and x− = max{−x, 0} is the
negative part of x. Set f2(t) = 0 and f(t) = −f1(t), then the system (5) is
equivalent to the second order differential equation

(6) x′′ + λx+ − µx− = f(t).

Let S(t) be the solution of the following initial value problem:

(7) x′′ + αx+ − βx− = 0, x(0) = 0, x′(0) = 1,

then, as is mentioned in the above, S ∈ C2(R) is τ -periodic with

(8) τ =
π√
α
+

π√
β
.

In [3], Capietto and Wang have discussed the existence of 2π-periodic solu-
tions of the following Liénard equation with asymmetric nonlinearities:

(9) x′′ + f(x)x′ + αx+ − βx− + g(x) = h(t),

where α and β are positive constants satisfying (8) with τ = 2π
n for some n ∈ N,

and h is 2π-periodic and continuous, and f, g : R → R are continuous and have
the following finite limits

lim
x→±∞

F (x) = F (±∞),

lim
x→±∞

g(x) = g(±∞),

where

F (x) =

∫ x

0

f(s)ds.

They have defined the functions λ(θ) and µ(θ) by

λ(θ) = 2n

[
g(+∞)

α
− g(−∞)

β

]
−
∫ 2π

0

S(θ + t)h(t)dt, θ ∈ [0, 2π/n],

µ(θ) = 2n [F (+∞)− F (−∞)]−
∫ 2π

0

S′(θ + t)h(t)dt, θ ∈ [0, 2π/n]

and have proved that:

Theorem A. Eq.(9) has at least one 2π-periodic solution if either the function
λ(θ) or the function µ(θ) is of constant sign.
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Theorem B. Eq.(9) has at least one 2π-periodic solution if
(i) The zeros of λ(θ) are simple and the zeros of λ(θ) and µ(θ) are different;
(ii) The signs of µ(θ) at the zeros of λ(θ) in [0, 2π/n] do not change or

change more than two times.

Now, here again, we encounter the same question as before: what if the
functions λ and/or µ are identically zero? In this case, it is natural to consider
the higher order approximations of some relevant Poincaré mapping. By using
this idea, which was also used before by [13], we will give some partial answers
to this question in this paper.

2. Main results

Let ϕ(t) be the solution of the autonomous system (4) satisfying

(10) H(ϕ(t)) = 1/2, ∀ t ∈ R.

Here we consider only the resonance case, that is, the case when 2π
τ = n for

some n ∈ N.
The main results of this paper are the following two theorems:

Theorem 1. Suppose 2π
τ = n for some n ∈ N. Define τ -periodic functions

λ1, µ2, λ3 as follows:

(11)

λ1(θ) =
∫ 2π

0
⟨ϕ(θ + t), f(t)⟩ dt,

µ2(θ) = −
∫ 2π

0
⟨ϕ′′(θ + t), f(t)⟩

∫ t

0
⟨ϕ(θ + s), f(s)⟩ dsdt,

λ3(θ) = α(θ) + 1
2

∫ 2π

0
⟨ϕ′′(θ + t), f(t)⟩

(∫ t

0
⟨ϕ(θ + s), f(s)⟩ ds

)2

dt,

where

α(θ) = λ1(θ)
[
(λ′

1(θ))
2 − µ2(θ)

]
.

Assume that λ1(θ) ≡ 0. Then the system (1) has at least one 2π-periodic
solution provided that one of the following conditions is satisfied:

(i) λ3(θ) ̸= 0 for all θ ∈ [0, τ ];
(ii) µ2(θ) ̸= 0 for all θ ∈ [0, τ ];
(iii) µ2(θ) ≡ 0 and λ′

3(θ)) ̸= 0 for all θ ∈ [0, τ ].

Theorem 2. Suppose 2π
τ = n for some n ∈ N and let λ1, µ2, λ3 be defined as in

(11). Assume that λ1(θ) ≡ 0. Then the system (1) has at least one 2π-periodic
solution if one of the following conditions holds:

(I) λ3(θ) has an even number of zeros {θ1, θ2, . . . , θ2M1} with M1 ≥ 1 and
for each i = 1, 2, . . . , 2M1,

µ2(θi) ̸= 0,

and

λ3(θ)µ2(θ)(θ − θi) > 0

for |θ − θi| > 0 small;
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(II) µ2(θ) ≡ 0 and λ3(θ) has an even number of zeros {θ1, θ2, . . . , θ2M2} with
M2 ≥ 2 and for each i = 1, 2, . . . , 2M2,

λ′
3(θi) ̸= 0,

and

λ3(θ)λ
′
3(θ)(θ − θi) < 0

for |θ − θi| > 0 small.

3. Asymptotic expansion of the Poincaré mapping

Since H is positively homogeneous of degree 2, we have the following Euler’s
identity:

(12) ⟨∇H(u), u⟩ = 2H(u) ∀u ∈ R2.

Let ϕ(t) be a τ -periodic solution of (4) satisfying (10). Any solution of (1) with
u(t) ̸= 0 can be written as

(13) u(t) = r(t)ϕ(θ(t))

for r(t) > 0 and θ(t) ∈ R (mod τ). Then the map T : (r, θ) → u is a diffeo-
morphism from the half plane {r > 0} to R2\{(0, 0)}, the functions r and θ are
of C3 as far as u(t) does not cross the origin. Substituting (13) into (1) yields

(14) r′Jϕ+ rθ′Jϕ′ = r∇H(ϕ) + f.

By using the fact that for any u ∈ R2, ⟨Ju, u⟩ = 0 and the equations (4) and
(10), and the Euler’s identity (12), a scalar product with ϕ in (14) yields

rθ′ = r + ⟨ϕ, f⟩,

while a scalar product with ϕ′ in (14) yields

−r′ = ⟨ϕ′, f⟩.

Therefore for u(t) = r(t)ϕ(θ(t)) ̸= 0, we have the following system equivalent
to (1):

(15)
r′ = −⟨ϕ′, f⟩,

θ′ = 1 + r−1⟨ϕ, f⟩.

Let (r(t; r0, θ0)), θ(t; , r0, θ0)) be the solution of (15) with initial value (r0, θ0).
Then by the boundedness of ϕ, ϕ′ and the assumption f ∈ L1(0, 2π)×L1(0, 2π),
we get for r0 ≫ 1 and t ∈ [0, 2π],

(16) r(t) = r0 +O(1), r−1(t) = r−1
0 +O(r−2

0 ), θ(t) = θ0 + t+O(r−1
0 ).

Lemma 1. For r0 ≫ 1, the Poincaré mapping

P : (r0, θ0) → (r1, θ1) = (r(2π; r0, θ0), θ(2π; r0, θ0))
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of the solution of (15) with initial value (r0, θ0) has the following asymptotic
expression

(17)
r1 = r0 − λ′

1(θ0) + µ2(θ0)r
−1
0 + (α′(θ0)− λ′

3(θ0)) r
−2
0 +O(r−3

0 ),

θ1 = θ0 + 2π + λ1(θ0)r
−1
0 + λ1(θ0)λ

′
1(θ0)r

−2
0 + λ3(θ0)r

−3
0 +O(r−4

0 ),

where λ1, µ2, λ3 and α are given by (11).

Proof. Substituting (16) into (15) and integrating over [0, t] ⊂ [0, 2π] yields

(18)

r(t) = r0 + µ1(θ0, t) +O(r−1
0 ),

r−1(t) = r−1
0 − µ1(θ0, t)r

−2
0 +O(r−3

0 ),

θ(t) = θ0 + t+ λ1(θ0, t)r
−1
0 +O(r−2

0 ),

where

(19)
λ1(θ, t) =

∫ t

0
⟨ϕ(θ + s), f(s)⟩ ds,

µ1(θ, t) = −
∫ t

0
⟨ϕ′(θ + s), f(s)⟩ ds.

Substituting (18) into (15) and integrating over [0, t] ⊂ [0, 2π] yields

(20)

r(t) = r0 + µ1(θ0, t) + µ2(θ0, t)r
−1
0 +O(r−2

0 ),

r−1(t) = r−1
0 − µ1(θ0, t)r

−2
0 +

[
µ2
1(θ0, t)− µ2(θ0, t)

]
r−3
0 +O(r−4

0 ),

θ(t) = θ0 + t+ λ1(θ0, t)r
−1
0 + λ2(θ0, t)r

−2
0 +O(r−3

0 ),

where

(21)

λ2(θ, t) =

∫ t

0

⟨ϕ′(θ + s), f(s))⟩λ1(θ, s)ds

−
∫ t

0

⟨ϕ(θ + s), f(s)⟩µ1(θ, s)ds,

µ2(θ, t) = −
∫ t

0

⟨ϕ′′(θ + s), f(s)⟩λ1(θ, s)ds.

Substituting (20) into (15) again and integrating over [0, t] ⊂ [0, 2π] yields

(22)
r(t) = r0 + µ1(θ0, t) + µ2(θ0, t)r

−1
0 + µ3(θ0, t)r

−2
0 +O(r−3

0 ),

θ(t) = θ0 + t+ λ1(θ0, t)r
−1
0 + λ2(θ0, t)r

−2
0 + λ3(θ0, t)r

−3
0 +O(r−4

0 ),
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where
(23)

λ3(θ, t)=

∫ t

0

⟨ϕ′(θ + s), f(s)⟩λ2(θ, s)ds+
1

2

∫ t

0

⟨ϕ′′(θ + s), f(s)⟩λ2
1(θ, s)ds

−
∫ t

0

⟨ϕ′(θ + s), f(s))⟩λ1(θ, s)µ1(θ, s)ds

+

∫ t

0

⟨ϕ(θ + s), f(s)⟩
(
µ2
1(θ, s)− µ2(θ, s)

)
ds;

µ3(θ, t)=−
∫ t

0

⟨ϕ′′(θ + s), f(s)⟩λ2(θ, s)ds−
1

2

∫ t

0

⟨ϕ′′′(θ + s), f(s)⟩λ2
1(θ, s)ds.

Substituting (19) and (21) into (23) and letting λk(θ) = λk(θ, 2π), µk(θ) =
µk(θ, 2π) for k = 1, 2, 3, and after some calculations and simplifications, we
obtain (17) and the following relations:

(24)

µ1(θ) = −λ′
1(θ);

λ2(θ) = λ1(θ)λ
′
1(θ);

µ3(θ) = α′(θ)− λ′
3(θ),

where α(θ) = λ1(θ)
[
(λ′

1(θ))
2 − µ2(θ)

]
. □

4. Planar mappings and rotation numbers

For σ > 0, let Bσ be the open ball centered at the origin and of radius σ
and let Eσ be its exterior, that is, Eσ = R2 − Bσ. Let S1 = R/(2πZ). Then
the points θ in S1 are defined by

θ = θ̄ + 2kπ, k ∈ Z, θ̄ ∈ R

and the norm of θ in S1 is defined by

∥θ∥ = min{|θ̄ + 2kπ| |k ∈ Z}.

Let P : Eσ → R2 be a one-to-one and continuous mapping, which can be
expressed in the following form:

(25)
θ1 = θ + 2π + λ(θ)r−k + F (r, θ),

r1 = r + µ(θ)r−m +G(r, θ),

where r ≥ R0 ≫ 1 and θ ∈ S1, and λ, µ ∈ C(S1,R), k ≥ 1, m ≥ 0, and F =
o(r−k), G = o(r−m) are continuous and τ -periodic in θ. Given a point (θ0, r0) ∈
Eσ, let {(θk, rk)}k∈I be the unique solution of the initial value problem for the
difference equation

(θk+1, rk+1) = P (θk, rk)
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defined in a maximal interval

I = {k ∈ Z|ka < k < kb},
where ka and kb are certain numbers in the set Z ∪ {+∞,−∞} satisfying

−∞ ≤ ka < 0 < kb ≤ +∞.

Lemma 2. Assume that τ = 2π
n for some n ∈ N and that the Poincaré mapping

of the solutions of (15) has the form of (25). Suppose that either λ(θ) ̸= 0 or
µ(θ) ̸= 0 for all θ ∈ S1. Then (1) has at least one 2π-periodic solution.

Proof. The proof is similar to the proof of Theorem A in [3], so we omit it for
brevity. □

Consider the mapping (25) and note that by assumption F and G satisfy

(26) |F (r, θ)|rk + |G(r, θ)|rm → 0 as r → +∞
uniformly with respect to θ ∈ [0, τ ].

Now consider the case when λ(θ) has a finite number of zeros in [0, τ). Since
the function λ(θ) is τ -periodic, it must have an even number of zeros in [0, τ).
Suppose that for all zeros {θi} of λ(θ), i = 1, 2, . . . , 2M , we have

(27) µ(θi) ̸= 0,

and

(28) λ(θ)µ(θ)(θ − θi) > 0

for |θ̄ − θ̄i| > 0 and small.
Now let us consider the curve Γr : [0, τ ] → R2 defined by

(29) Γr(θ) = (θ1 − θ, r1 − r),

which is easily seen to be closed. Assume that if r > 0 is large enough, then
Γr(θ) ̸= (0, 0) for every θ ∈ [0, τ ]. Hence, we may look for the number of
rotations around the origin performed by the vector Γr(θ) while θ varies from
0 to τ . If we denote that number by dΓr , then for r ≫ 1, we have the following
result.

Lemma 3. Consider the mapping (25). Assume that τ = 2π
n for some n ∈ N

and that |θ̄− θ̄i| > 0 and small for all i = 1, 2, . . . , 2M , and that (27) and (28)
are satisfied. Then for r ≫ 1, we have

dΓr = 1−M.

Proof. Let Vr(θ) = (2π + λ(θ)r−k, µ(θ)r−m). Then it follows from (25) that

Γr(θ) = Vr(θ) + (F (r, θ), G(r, θ)),

where
F (r, θ) = o(r−k), G(r, θ) = o(r−m).

From the assumption Γr(θ) ̸= (0, 0) for all θ ∈ [0, τ ] and (27), we see that for
r ≫ 1, Vr(θ) ̸= (0, 0) for all θ ∈ [0, τ ] and dΓr = dVr . Therefore, we need only
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to compute dVr for r ≫ 1. From the expression of Vr(θ), we see easily that
dVr = 1+dϕ, where dϕ is the rotation number of the vector (λ(θ)r−k, µ(θ)r−m).

Let 0 ≤ θ1 < θ2 < · · · < θ2M < τ be the zeros of λ(θ) in [0, τ). Then we
get from (28), λ(θ)µ(θ) < 0 for θ < θi and |θ̄− θ̄i| > 0 small, and λ(θ)µ(θ) > 0
for θ > θi and |θ̄− θ̄i| > 0 small, i = 1, 2, . . . , 2M. From the above analysis, we
obtain

dϕ =
1

2π

∫ τ

0

(
arctan

(
µ(θ)rk−m

λ(θ)

))′

dθ

= − 1

2π

2M∑
i=1

∫ θ+
i

θ−
i

(
arctan

(
µ(θ)rk−m

λ(θ)

))′

dθ

= − 1

2π

2M∑
i=1

[
lim

θ→θ+
i

arctan

(
µ(θ)rk−m

λ(θ)

)
− lim

θ→θ−
i

arctan

(
µ(θ)rk−m

λ(θ)

)]

= − 1

2π

2M∑
i=1

[arctan(+∞)− arctan(−∞)]

= − 1

2π

2M∑
i=1

[π
2
+

π

2

]
= −M.

Hence dΓr = dVr = 1−M for r ≫ 1. □

Similarly, we can prove the following lemma:

Lemma 4. Suppose that (27) holds for all i = 1, 2, . . . , 2M and that for |θ̄ −
θ̄i| > 0 small and r ≫ 1, one has

λ(θ)µ(θ)(θ − θi) < 0.

Then

dΓr = 1 +M.

5. Proofs of theorems

Proof of Theorem 1. In the case of (i) and (ii), since λ1(θ) ≡ 0, it follows from
Lemma 1 that the Poincaré mapping of the solutions of (15) takes the form of
(25) with

(30) λ(θ) = λ3(θ), µ(θ) = µ2(θ) and k = 3, m = 1.

Similarly, in the case of (iii), Lemma 1 implies that the Poincaré mapping takes
the form of (25) with

(31) λ(θ) = λ3(θ), µ(θ) = µ3(θ) = −λ′
3(θ) and k = 3, m = 2.

Now Theorem 1 follows from Lemma 2. □
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Proof of Theorem 2. It follows from the proof of Theorem 1 that the Poincaré
mapping of the solutions of (15) takes the form of (25) with (30) in the case of
(I) and with (31) in the case of (II). Let Br ⊂ R2 be the ball of radius r > 0.
Define the set Dr by

Dr = {u ∈ C1[0, 2π] : u(t) ∈ Br, t ∈ [0, 2π]}.
Then in this case, the Brouwer degree of the map I −P with respect to the set
Br at the origin is precisely the number of rotations around the origin by the
vector Γr. Hence, for r ≫ 1, in the case (I) and (II), we get deg(I−P, Br, 0) =
1 −M ̸= 0, which implies that the Poincaré mapping P has at leat one fixed
point, and hence (1) has at least one 2π-periodic solution. □
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