에너지 저장설비 응용을 위한 고 성능 대 전류 마이카 논문 커패시터 설계 및 제작에 관한 연구 60-10-13

A Study on the Design and Fabrication of High Performance Large Current Mica Capacitor for Energy Storage Facility Applications

정 명 희^{*}・윤 의 중[†] (Myunghee Jung · Eui-Jung Yun)

Abstract – In this study, large-current (75 – 400 A), high-voltage (500 – 1000 V_{rms}), reliable capacitors with capacitances (C) of 100 – 1000 nF were developed for energy storage facility applications. Mica was used as the dielectric of the capacitors. In order to form a parallel stack of a capacitor element, 50 μ m thick mica sheets with a size of 30mm×35mm were used with lead foils for the plate lead type of mica capacitors (HCM-L), while the same sizes of mica sheets coated by Ag paste were employed with lead foils for the parallel plate terminal type (HCM-C). The developed capacitors exhibited well behaviored device characteristics which meet the requirements of the capacitors. The developed capacitors for large current stress was superior to those measured for the capacitors prepared recently by CDETm.

Key Words : Large-current, Mica capacitor, High-voltage, Energy storage

1. 서 론

최근에 산업 발전의 영향으로 에너지 저장 관련 설비, 고 전압 정류 회로, 고주파 적용 인버터 및 정류 장비, 반도체 장비 등의 특수 조건 및 고 신뢰성을 요구하는 신기술 설비 가 요구되고 있다. 또한 이러한 신기술 설비들은 대 전류용 커패시터 (capacitor; 콘덴서)를 필수적인 핵심부품으로 사용 하고 있다. 따라서 향후 제조 및 산업설비의 비약적인 발전 을 위해서는 주변 변화 요인에 따른 커패시터 정전 용량 및 유전정접 값의 변화가 매우 적으며 고 주파수 특성이 매우 우수한 대 전류용 커패시터의 기술 개발 및 적용이 매우 시 급한 상황이다[1].

마이카(운모)는 전자산업체에서 커패시터의 절연 박막으 로, 전기산업체에서 부도체로 광범위하게 사용되는 재료이 다. 마이카는 물을 함유하는 potassium alumino-silicates 군 에 속하는 천연발생 미네랄(mineral)의 포괄적인 이름으로서 다른 재료에서는 발견할 수 없는 화학적, 물리적, 전기적, 열 적 및 기계적인 성질들의 조합을 가진다. 열적으로. 마이카 는 안정성이 뛰어나고 불연성이어서 600 - 900°C 범위의 온 도에서 사용가능하다. 또한 화학적으로 마이카는 매우 안정, 하여 여러 가지 용매(solvent), 알칼리(alkali), 산(acid) (강한 HF 와 농축된 황산은 예외)들과 반응하지 않는다. 그리고

 * 비 회 원 : 안양대 공대 디지털미디어학과 교수
 * 교신저자, 정회원 : 호서대 공대 시스템제어공학과 교수 E-mail : ejyun@hoseo.edu 접수일자 : 2011년 8월 4일 최종완료 : 2011년 9월 1일 마이카는 높은 절연강도, 균일한 비유전율, 낮은 전력손실 (높은 품질계수(Q factor)), 높은 비저항을 가지므로 고주파 특성이 좋아 전기적 성질도 뛰어나다. 마이카는 비교적 구 부리기 쉬우면서도 막 평면 내에 강도를 견고하게 유지할 수 있어 기계적 성질도 뛰어나다. 이 이외도 비대칭적인 결 정구조를 가지고 있어 마이카는 두께가 1 µm 이하의 박막으 로 자를 수 있고 그 결과 매우 유연성이 있는 투명 마이카 박막을 만들 수 있다[2,3]. 또한 마이카는 높은 aspect 비 (직경/두께 ratio)를 가진 silicate 미네랄의 얇은 조각으로 이루어져 있어 각종 페인트와 플라스틱용 충전제(filler)로 사용되고 있다[4].

위에서 언급된 많은 장점을 가진 마이카를 이용한 마이카 커패시터는 과거로부터 고 신뢰성, 고안정성이 요구되는 전 자기기 및 산업용 각종 장비에 오랜 동안 사용되어져 왔다. 특히 고전압 대용량 모터, 발전소 발전자, 대용량 전동기 등 의 단락 현상 및 감시 시스템의 고주파 필터 센서로서 핵심 적인 기능을 가진다[5]. 그러나 현재 대 전류용 마이카 커패 시터 및 대 전류용 커패시터 들은 고가이며 전량 수입에 의 존하고 있는 상황이다. 그러므로 .국내기술을 이용하여 저가 의 고 신뢰성 대 전류용 마이카 커패시터 제작의 필요성이 대두되고 있다.

따라서 본 연구에서는 이러한 문제점을 극복하기 위하여 국내 기술을 이용하여 대 전류용 마이카 커패시터를 설계 제작하였다. 제작된 대 전류 마이카 커패시터에 대하여 커 패시턴스, 대 전류 stress에 따른 온도변화, 열 충격 실험 등 을 통하여 특성을 확인하였고 유명 외국(미국 CDE(cornell dubilier electronics)사)산 커패시터와 비교 분석하였다.

2.실 험

2.1 대 전류 마이카 커패시터 설계

본 논문에서는 75 - 400A 범위의 대 전류, 500 - 1000V_{ms} 범위의 고 전압, 100 - 1000nF 범위의 커패시턴스 의 특성을 갖는 여러 종류의 마이카 커패시터를 설계하였 다. 표 1은 설계된 한 가지 종류의 대 전류 마이카 커패시 터의 사양을 요약하였다. 설계된 커패시터의 유전정접 (dissipation factor)과 사용온도 범위는 공통적으로 각각 0.05% 이하와 -35~135°C로 하였다.

- 표 1 본 논문에서 설계된 대 전류 마이카 커패시터 사 양의 한 가지 예
- Table 1 One example of specifications of large-current mica capacitors designed in this study

Capacitance Value (nF)	100
Current Value (A)	75
Maximum Voltage (V _{rms})	500
Maximum Frequency (kHz)	200
Dissipation Factor	$0.0005 \leq$
Range of Temperature(°C)	$-35 \sim 135$

표 1의 사양을 만족하는 대 전류 마이카 커패시터를 설계 하는데 있어서, 정격 커패시턴스(정전용량) 및 전류 값은 커 패시터의 병렬연결을 고려하여야 하고, 최대 내전압은 병렬 연결 된 커패시터의 양단에 걸리는 전압을 고려하여야 한 다. 따라서 커패시터의 적절한 병렬연결을 통하여 표 1의 사양에 적합한 대 전류 마이카 커패시터의 설계가 가능하 다.

본 연구에서는 마이카 시트의 크기를 30mm×35mm, 두께 를 0.05mm로 선택하였다. 마이카 시트의 비유전율은 5.4를 사용하였다. 연박(Lead Foil) 리드의 크기는 29mm×20mm이 고 두께는 0.03mm로 하였다. 최소 단위의 커패시터의 단위 커패시턴스 값(C₁₁)은 다음 식 (1)과 같이 계산되었으며, 555pF의 커패시턴스를 가진다.

$$C_{11} = \varepsilon_{0}\varepsilon_{r} \frac{l \times W}{d} = 8.854 \times 10^{-12} \times 5.4 \times$$
(1)
$$\frac{-(29 \times 10^{-3})(20 \times 10^{-3})}{0.05 \times 10^{-3}} = 555 \text{ pF}$$

여기서 ϵ_0 는 진공의 유전율(=8.854×10⁻¹² F/m), ϵ_r 는 마이카 의 비유전율(=5.4), l은 연박 리드의 길이, W는 연박 리드 의 폭, d는 마이카의 두께를 나타낸다.

그림 1은 본 연구에서 설계 시 고려한 대 전류 마이카 커 패시터의 등가회로를 나타낸다. 여기서 C₁₁은 식(1)에서 정 의된 단위 커패시턴스, I₁₁은 C₁₁에 흐르는 전류, N은 C₁₁의 병렬연결 수, I는 대 전류 마이카 커패시터에 흐르는 총 전 류를 나타낸다. N개의 단위 커패시터 C₁₁을 병렬로 연결할

- 그림 1 본 논문에서 설계된 대 전류 마이카 커패시터의 등 가회로
- Fig. 1 Equivalent circuit of large-current mica capacitors designed in this study

경우는 전체 커패시턴스가 C₁₁과 병렬연결 수 N의 곱과 같 으므로 전체 커패시턴스가 증가하게 된다. 따라서 N 개의 C₁₁을 병렬 연결한 대 전류 마이카 커패시터의 총 커패시턴 스 C가 100nF (표 1 참조)일 때 다음의 식 (2)으로부터 N 값을 결정하였다.

$$N = \frac{C}{C_{11}} = \frac{100\,nF}{555\,pF} = 180\tag{2}$$

여기서 C11은 식 (1)의 결과를 사용하였다.

또한 C₁₁에 흐르는 전류 I₁₁은 다음과 같은 식 (3)을 이 용하여 계산되었다[6].

$$I_{11} = \varepsilon_0 \varepsilon_r 2\pi f \frac{V_m}{d} l \times W = 0.41 \quad A \tag{3}$$

여기서 ϵ_0 는 진공의 유전율(=8.854×10⁻¹² F/m), ϵ_r 는 마이카 의 비유전율(=5.4), f는 동작 주파수(=200kHz), V_m은 최대 V_{rms} 값(=500V_{rms}), *l*은 연박 리드의 길이, *W*는 연박 리드 의 폭, *d*는 마이카의 두께를 나타낸다. 이 때 N개의 단위 커패시터 C₁₁을 병렬로 연결할 경우 전체 전류 I는 각 C₁₁에 흐르는 전류 I₁₁과 병렬연결 수 N의 곱과 같으므로 전체 전 류도 증가하게 된다. 따라서 전체 전류 I는 다음과 같은 식 (4)을 이용하여 계산되었고, 74 A의 전류를 가져 표 1의 사 양 값을 잘 만족시키고 있다.

$$I = N \times I_{11} = 74$$
 A (4)

여기서N은 식 (2)의결과를, I₁₁은 식 (3)의 결과를 사용하였 다.

마이카 시트의 내전압 특성은 선택된 전압을 100 시간 동 안 상온에서 인가한 후에 24시간 이상 상온 방치 후 커패시 터의 정전용량, 내전압, 유전정접 등의 변화량을 측정하여 얻어졌는데 0.05mm의 마이카 시트가 견딜 수 있는 내전압 은 약 5kV_{ms}로 측정되었다. 따라서 한 개의 C₁₁의 내전압은 5kV_{ms}이고, 이를 N개로 병렬 연결하였어도 전체 커패시터 C가 견딜 수 있는 최대 내전압도 5kV_{ms}로 같으므로 충분히 500V_{ms}의 조건을 충족하게 된다. 이러한 일련의 설계 과정 을 거쳐서 표 1의 사양을 만족시키는 대 전류 마이카 커패 시터가 설계되었다.

2.2 대 전류 마이카 커패시터 제작 및 특성 측정

본 연구에서는 앞의 2.1절에서 기술된 설계방법으로 중요 한 파라미터 들을 추출하였고 이를 바탕으로 75 - 400A 범 위의 대 전류, 500 - 1000V_{rms} 범위의 고 전압, 100 -1000nF 범위의 커패시턴스의 특성을 갖는 여러 종류의 마이 카 커패시터를 제작하였다. 그림 2는 본 연구에서 제작한 마이카 커패시터의 두 가지 구조를 나타내는 그림이다. 그 림 2에서 판상리드 형(plate lead type; HCM-L)은 전극 패 턴이 없는 마이카 sheet와 전극용 연박(납(lead) sheet)을 사 용하여 제작되었고 반면에 양면 평판 형(parallel plate terminal type; HCM-C)은 Ag paste로 전극 패턴이 된 마 이카 sheet를 사용하여 제작되었다.

- 그림 2 본 논문에서 제작된 대 전류 마이카 커패시터의 두 가지 구조: (a) 판상리드 형(HCM-L), (b) 양면 평판 형 (HCM-C)
- Fig. 2 Two structures of large-current mica capacitors fabricated in this study: (a) plate lead type (HCM-L), (b) parallel plate terminal type (HCM-C).

그림 3은 대 전류 마이카 커패시터의 제작 공정을 나타내 는 블록도이다. 마이카는 인도산 천연 루비 마이카를 이용 하였다. 유전체를 마이카로 하고 전극을 연박(HCM-L type 의 경우) 이나 마이카에 코팅된 Ag paste (HCM-C type의 경우)를 사용하여 각각 1매씩 교대로 적층하여 단위 커패시 터 C₁₁을 병렬 연결한 병렬 커패시터 C를 제작하였다. 여기 서 마이카 시트, 연박과 Ag paste의 크기 및 적층의 병렬연 결 수는 앞 절의 설계과정에 따라 결정되었다. 오븐 및 압 착프레스를 이용하여 적층된 커패시터들을 열간 압착하고 C₁₁소자 간 병렬연결을 위한 납땜을 수행하여 내부단자를 만들어서 병렬 커패시터 C의 소자 형태로 제작하였다. 제작 된 C소자의 커패시턴스 및 최대 내전압 등을 1차적으로 검 사 한 후 다시 외부단자 연결용 납땜을 수행 하였다. 제작 된 커패시터 본체에 단자를 연결한 다음 고압용 에폭시 DWR 930A를 경화 온도 80°C에서 1시간 동안 진공 함침을 실시하였다. 필요에 따라 완성된 커패시터의 외부를 가공 및 코팅 처리하였다.

그림 3 대 전류 마이카 커패시터의 제작 공정도

그림 4(a)는 본 연구에서 제작된 300nF/150A/500Vms특성 을 갖고 40mm×45mm×25mm의 외형크기를 갖는 HCM-L 형의 대 전류 마이카 커패시터의 외형을, 그림 4(b)는 본 연구에 서 제작된 100nF/75A/500Vms특성을 갖고 38.5mm×43.5mm ×29.5mm의 외형크기를 갖는 HCM-C 형의 대 전류 마이카 커패시터의 외형을 각각 나타낸다. 외형을 구성하는 재질로 는 고절연용으로 적합한 에폭시 소재를 이용하였으며, 단자 의 재질은 도전성과 작업성을 고려하여 황동소재를 사용하 였다.

제작된 대 전류 마이카 커패시터의 주파수에 따른 전기적 특성(커패시턴스, 유전정접) 변화는 HP4278A 커패시터 미터 로 측정하였다. 또한 빠른 전압 반전(voltage reversal)은 커 패시터의 유전체부분(특히 금속전극 판의 모서리)에 상당한 stress를 발생시킨다. 즉 과도한 전압반전은 유전체 표면에 부분 항복을 유도하여 유전체 전체의 파괴를 초래한다. 따 라서 이러한 특성을 대표하는 VRF(voltage reversal factor) 는 커패시터의 수명을 연구 할 때 고려할 중요한 파라미터 이다. 보통 VRF와 품질계수(Q factor)(= 1/유전정접)는 다 음과 같은 식 (5)를 이용하여 계산될 수 있다[7].

$$VRF = 1 - \frac{\pi}{2Q} \tag{5}$$

본 연구에서 제작된 대 전류 마이카 커패시터의 측정된 유 전정접 값은 0.001 이하 이었고 이 값과 식 (5)로부터 계산 된 VRF는 99.8% 이상이므로 제작된 대 전류 마이카 커패 시터는 이상적인 VRF 특성(100%)을 보여주고 있다.

- **그림 4** 본 연구에서 제작된 두 가지 구조의 마이카 커패시 터의 사진 : (a) 300nF/150A/500V_{rms} (40mm×45mm×25mm; HCM-L 형), (b) 100nF/75A/500V_{rms} (38.5mm×43.5mm ×29.5mm; HCM-C 형)
- Fig. 4 Photographs of two structures of large-current mica capacitors fabricated in this study : (a) 300nF/150A/ 500V_{rms} (40mm×45mm×25mm; HCM-L type), (b) 100nF/75A/500V_{rms} (38.5mm×43.5mm×29.5mm; HCM-C type)

마이카 커패시터의 과전압 특성은 사양 전압의 150%에 해당하는 전압을 100 시간 동안 상온에서 인가한 후에 24시 간 이상 상온 방치 후 커패시터의 정전용량, 내전압, 유전정 접 등의 변화량을 측정하여 얻어졌다. 또한 열 충격에 따른 제작된 커패시터의 정전용량, 내전압, 유전정접 등의 변화를 측정하기 위하여 단기간의 열 충격 시험도 항온항습조를 이 용하여 수행하였다. 일반적으로 개개의 대 전류 마이카 커 패시터의 허용 전류 값을 직접 측정하기 어렵다. 따라서 개 발된 2개의 커패시터를 power 변환 공급 장치가 장착된 RF matcher시스템 내에 연결시켜 시스템 power를 6000 -8000W로 변화시키면서 (이 때 주파수에 따라 reference power가 30 - 200W로 변함) 커패시터의 온도 변화를 디지 털 레이저 온도 측정기로 10분 단위로 90분 동안 측정함으 로써 적용 전류 값에 대한 커패시터의 안정성을 확인하여 최대 허용 가능한 전류 값을 간접적으로 측정하였다. 적용 전류 값에 대한 커패시터의 안정성은 그 우수성이 입증된 미국 CDE(cornell dubilier electronics)사의 동급 사양 제품 의 안전특성과 비교하였다.

3. 결과 및 고찰

3.1 주파수에 대한 커패시턴스 특성

그림 5(a)는 그림 4(a)에 나타낸 150A 전류, 500Vms 전 압, 300nF 커패시턴스의 특성 사양을 갖는 HCM-L 형의 대 전류 마이카 커패시터들의 주파수에 대한 커패시턴스 특성 을 나타낸다. 그림 5(a)로부터 제작된 HCM-L 형의 커패시

- **그림 5** 본 연구에서 제작된 대 전류 마이카 커패시터들의 주파수에 대한 커패시턴스 특성 : (a) 300nF/150A/500 V_{rms} (HCM-L 형), (b) 100nF/75A/500V_{rms} (HCM-C 형).
- Fig. 5 Capacitance-frequency characteristics of large-current mica capacitors fabricated in this study : (a) 300nF/ 150A/500V_{rms} (HCM-L type), (b) 100nF/75A/500V_{rms} (HCM-C type).

터들은 200kHz 주파수 범위까지 296 nF의 일정한 커패시턴 스 값을 유지하고 있음을 알 수 있다. 주파수가 200kHz 이상 으로 증가함에 따라 커패시턴스 값이 양의 피크 값에서 음 의 피크 값으로 전위되며 1MHz의 주파수에서 커패시턴스 값이 0의 지점을 지나게 되는데 이 때 커패시턴스 값이 0을 지나는 1MHz의 주파수를 공진주파수라 한다[8]. 제작된 HCM-L 형의 커패시터들이 공진주파수 이전에서 양의 커패 시턴스 값을 갖는 것은 공진주파수 미만의 주파수에서 커패 시터들의 소자 특성이 정상적인 용량성임을 의미한다. 또한 제작된 HCM-L 형의 커패시터들이 공진주파수 이상에서 음 의 커패시턴스 값으로 변화되는 것은 공진주파수 이상에서 커패시터의 특성이 비정상적인 유도성으로 변화됨을 나타낸 다. 그림 5(a)로부터 제작된 HCM-L 형의 커패시터들은 200kHz 주파수 범위까지 296 nF의 일정한 커패시턴스 값을

- 그림 6 개발된 대 전류 마이카 커패시터에 적용된 열 충격 시험 조건
- Fig. 6 Thermal shock test condition applied for large-current mica capacitors developed.

유지하고 있어 300nF로 제안된 커패시턴스 값 사양을 1.3%의 오차 범위 내에서 잘 만족하고 있음을 알 수 있다. 따라서 본 연구에서 제작된 HCM-L 형의 대 전류 마이카 커패시터들은 우수한 커패시턴스의 주파수특성을 나타냄을 알 수 있다.

또한 그림 5(b)는 그림 4(b)에 나타낸 75A 전류, 500Vrms 전압, 100nF 커패시턴스의 특성 사양을 갖는 HCM-C 형의 대 전류 마이카 커패시터들의 주파수에 대한 커패시턴스 특 성을 나타낸다. 그림 5(b)로부터 제작된 HCM-C 형의 커패 시터들도 400kHz 주파수 범위까지 98nF의 커패시턴스 값을 유지하고 있어 100nF로 제안된 커패시턴스 값 사양을 2%의 오차 범위 내에서 잘 만족하고 있음을 알 수 있다. 따라서 본 연구에서 제작된 HCM-C 형의 대 전류 마이카 커패시터 들도 우수한 커패시턴스의 주파수특성을 나타냄을 알 수 있 다. 또한 그림 5(b)에서 주파수가 400kHz 이상으로 1MHz 까지 증가함에 따라 커패시턴스 값이 양의 피크 값을 갖게 되는데 이는 커패시턴스 값이 0을 지나는 공진주파수가 1MHz 보다 더 크다는 것을 의미한다. 그리고 그림 5로부터 원하는 커패시턴스 값이 증가하면 공진주파수는 감소하여 커패시턴스 값 과 공진주파수는 서로 반비례관계에 있음을 확인 할 수 있었다.

3.2 열 충격 시험 결과

그림 6은 개발된 대 전류 마이카 커패시터에 적용된 열 충격 시험 조건을 나타낸다. 단기적인 열 충격에 따른 커패 시턴스, 내전압, 유전정접, 외관상태의 변화를 알아보기 위하 여 열 충격 시험을 실시하였다. 상온(26°C)에서 3시간 이상, 저온(-35°C)에서 1시간, 상온에서 1시간, 고온(135°C)에서 1 시간의 순으로 1회의 열 충격을 가한 후 커패시턴스, 내전 압, 유전정접, 외관상태의 변화를 측정하였다. 열 충격 시험 은 환경시험 방법-전기/전자-온도 변화 시험 방법규격인 C-0255:2001 (IEC 60068-2-33:1971, IEC 60068-2-14:1984) 의 기준에 따라 실시되었다.

표 2는 그림 6의 조건을 적용한 후의 100nF/100A/1000 V_{rms} (HCM-L 형) 특성을 갖는 커패시터들에 대한 대표적 인 열 충격 시험 결과를 나타낸다. 표의 결과에서 알 수 있 듯이 열 충격을 가한 이후에도 커패시턴스, 내전압, 유전정 접 및 외관 상태에 변화가 발생하지 않아 개발된 마이카 커 패시터는 우수한 열 충격 특성을 보이고 있다.

- 표 2 100nF/100A/1000 V_{rms} 특성 갖는 HCM-L 형 마이카 커패시터들에 대한 대표적인 열 충격 시험 결과의 요약

	시험 전			시험 후		
커패시턴스	99	101	105	100	101	104
(nF)						
죄대 전압	1000	1000	1000	1000	1005	1003
(V_{rms})	1000	1000	1000	1000	1000	1000
유전정접						
(Dissipation	0.001	0.0002	0.0003	0.0009	0.0002	0.0002
Factor)						
외관상태	OK	OK	OK	OK	OK	OK

3.3 적용 전류 값에 대한 커패시터의 안정성 실험 결과

개발된 커패시터들의 최대 허용 가능한 전류 값을 간접적 으로 측정하기 위하여 2개의 제작된 커패시터를 RF matcher시스템 내에 연결시켜 시스템 power를 6000 -8000W로 변화시키면서 (이 때 주파수에 따라 reference power가 30 - 200W로 변함) 커패시터의 온도 변화를 측정 함으로써 적용 전류 값에 대한 커패시터의 안정성을 확인하 는 실험을 수행 하였다. 적용 전류 값에 대한 커패시터의 안정성은 그 우수성이 입증된 미국 CDE사의 동급 사양[9] 제품의 안전특성과 비교하였다.

그림 7은 시스템 power를 6000W로 고정시키고 주파수에 따라 reference power를 30 - 200W로 변화시킬 때 개발된 2개의 커패시터(100nF/75A/500Vrms 특성 가짐)와 동급사양 의 미국 CDE사의 2개의 커패시터들의 온도 변화 특성을 나 타내고 있다. 그림 7(a)로부터 본 연구에서 개발된 커패시터 들은 시스템 power가 6000W이고 reference power가 30W 일 때 모두 정상적으로 작동함을 알 수 있었다. 그리고 본 연구에서 개발된 제품 (This Work-1, This Work-2)의 발 열온도가 미국 CDE 제품 (CDE-1, CDE-2)의 발열 온도 보 다 10 - 20°C 낮아 개발된 제품의 전류 특성이 미국 CDE 제품보다 더 우수함을 알 수 있었다. 또한 그림 7(b)로부터 본 연구에서 개발된 커패시터들은 시스템 power가 6000W 이고 reference power가 200W로 증가(주파수가 증가)해도 모두 정상적으로 작동 하였고 개발된 제품의 발열온도도 미 국 CDE 제품의 발열 온도 보다 10 - 20°C 낮아 그림 7(a) 의 경우와 같이 개발된 제품의 전류 특성이 미국 CDE 제품 보다 더 우수함을 다시 확인하였다.

그림 8은 시스템 power를 8000W로 고정시키고 주파수에 따라 reference power를 30 - 200W로 변화시킬 때 개발된 2개의 커패시터와 동급사양의 미국 CDE사의 2개의 커패시 터들의 온도 변화 특성을 나타내고 있다. 그림 8(a)로부터 본 연구에서 개발된 커패시터들은 시스템 power가 8000W 로 증가하고 reference power가 30W 일 때도 모두 정상적 으로 작동함을 알 수 있었다. 그리고 본 연구에서 개발된 제품 (This Work-1, This Work-2)의 발열온도가 미국

- 그림 7 시스템 power=6000W로 고정시키고 reference power 를 (a) 30W 와 (b) 200W로 변화시킬 때 개발된 커패
- 국 CDE사의 커패시터들의 온도 변화 특성. Fig. 7 Temperature-time characteristics of 100nF/75A/500 V_{rms} capacitors developed in this work and those by CDE with the reference power of (a) 30W and (b)

200W when the system power = 6000W.

시터(100nF/75A/500Vms 특성 가짐)와 동급사양의 미

CDE 제품 (CDE-1, CDE-2)의 발열 온도 보다 10 - 20°C 낮아 개발된 제품의 전류 특성이 미국 CDE 제품보다 더 우 수함을 알 수 있었다. 또한 그림 8(b)로부터 본 연구에서 개 발된 커패시터들은 시스템 power가 8000W이고 reference power가 200W로 증가(주파수가 증가)해도 모두 정상적으로 작동 하였고 개발된 제품의 발열온도도 미국 CDE 제품의 발열 온도 보다 10 - 20°C 낮아 그림 7과 그림 8(a)의 경우 와 같이 개발된 제품의 전류 특성이 미국 CDE 제품보다 더 우수함을 다시 확인하였다.

결론적으로 그림 7과 그림 8로부터 본 연구에서 개발된 커패시터들은 시스템 power가 6000 - 8000W일 때 모두 정 상적으로 작동함을 알 수 있었고 특히 미국 CDE 제품보다 발열온도가 10 - 20°C 낮아 개발된 제품의 전류 값 및 주파

- 그림 8 시스템 power=8000W로 고정시키고 reference power 를 (a) 30W 와 (b) 200W로 변화시킬 때 개발된 커패 시터(100nF/75A/500Vrms 특성 가짐)와 동급사양의 미 국 CDE사의 커패시터들의 온도 변화 특성
- Fig. 8 Temperature-time characteristics of 100nF/75A/500 V_{rms} capacitors developed in this work and those by CDE with the reference power of (a) 30W and (b) 200W when the system power = 8000W.

수 특성이 미국 CDE 제품보다 더 우수함을 알 수 있었다. 이 결과로부터 본 연구에서 개발된 커패시터들은 허용전류 값(75A)을 잘 만족시킴을 알 수 있다.

커패시터의 개발 및 양산가능성 평가에서는 장기신뢰성 부분이 중요한 평가항목이므로 장기적인 열 충격에 따른 제 작된 커패시터의 커패시턴스, 내전압, 외관 상태 등의 변화 를 알기 위하여 온도 cycling 시험(신뢰성 시험)이 필요하 다. 온도 cycling 시험은 500시간동안 -35°C에서 135°C까지 의 온도범위에서 온도변화율을 1°C/min으로 하여 실시하였 다. 이때 -35°C와 135°C에서 유지시간을 4시간으로 하였다. 온도 cycling 시험 결과 커패시턴스, 내전압, 유전정접 및 외 관 상태에 변화가 발생하지 않아 개발된 마이카 커패시터는 장기적인 온도변화에도 매우 안정적인 것으로 평가되었다. 향후 연구진행에서는 좀 더 지속적이고 체계적인 온도 cycling 시험 수행이 필요하다고 사료된다.

4. 결 론

본 연구에서는 전량 수입에 의존하고 있는 대 전류용 마 이카 커패시터를 국내 기술을 이용하여 성공적으로 설계 제 작하였다. 유전체용 마이카 소재는 주변 변화 요인에 따른 커패시터 정전 용량 및 유전정접 값의 변화가 매우 적으며 고 주파수 특성이 매우 우수하여 채택하였다. 본 연구에서 제작된 대 전류 마이카 커패시터들은 200-400kHz 주파수 범위까지 제안된 커패시턴스 값 사양을 1-2%의 오차 범위 내에서 잘 만족하는 우수한 커패시턴스의 주파수특성을 나 타냄을 알 수 있었다. 또한 단기적인 열 충격시험 결과 시 험전과 시험후의 커패시턴스, 내전압, 유전정접, 외관상태가 변화 없이 안정한 것으로 나타났다. 그리고 본 연구에서 개 발된 커패시터들은 시스템 power가 6000 - 8000W일 때 모 두 정상적으로 작동함을 알 수 있었고 특히 미국 CDE 제품 보다 발열온도가 10 - 20°C 낮아 개발된 제품의 전류 값 및 주파수 특성이 미국 CDE 제품보다 더 우수함을 알 수 있었 다. 앞의 연구결과들을 응용하면 대 전류 및 고 커패시턴스 를 갖는 마이카 커패시터의 전류 및 주파수 특성 개선, Plasma 및 산업용 장비에 적용되는 특수 마이카 커패시터 자체개발과 품질특성 향상 등의 기대 효과를 얻을 수 있다 고 사료된다. 또한 본 연구에서 사용한 설계기술은 대 전류 마이카 커패시터를 개발할 때 중요한 기준이 될 수 있다.

감사의 글

이 논문은 2011년도 호서대학교의 재원으로 학술연 구비 지원을 받아 수행된 연구임 (과제번호: 2011-0009)

참 고 문 헌

- 신희상, 조성민외 4인, "고압 회전기 부분방전 신호의 노이즈 특성 분석", 한국조명·전기설비학회 추계학술대 회논문집, pp.287, 2007. 11.
- [2] X.F. Lu, L.A. Majewski, A.M. Song, "Electrical characterization of mica as an insulator for organic field-effect transistors", Organic Electronics, vol. 9, pp. 473-480, March 2008.
- [3] D.M. Hepburn, I.J. Kemp, A.J. Shields, "Mica", IEEE Electr. Insul. Mag. vol. 16, pp 19, 2000.
- [4] C. Yang, P. Liu, "Polypyrrole/conductive mica composites: Preparation, characterization, and application in supercapacitor", Synthetic Metals, vol. 160, pp. 768-773, February 2010.
- [5] J.S. Bowers "Characterization of Reconstituted Mica Paper for use in High Voltage Capacitors", Electrical Insulation Conference and Electrical Manufacturing & Coil Winding Conference, pp. 303, Octorber 1999.
- [6] W.H. Hayt Jr., J.A. Buck, Engineering Electromagnetics, 6th Edition, New York: McGraw-Hill, pp. 329–333, 2001.

- [7] "NESS Engineering Technical Data (Capacitor Lifetime Equations)", http://www.nessengr.com /techdata/caplife/caplife.html
- [8] E.J. Yun, J.W. Kim, Y.O. Han, H.C. Kim, M.H. Jung, N.K. Park, "Development and characteristics of solenoid-type SMD RF chip inductors", Current Applied Physics, vol. 10, pp. 962–966, January 2010.
- [9] Catalogs & Datasheets for Standard Dipped Mica Capacitors (catalog part number: CD42FA913JO3F), CDE Cornell Dubilier: http://www.cde.com

저 자 개 소

정 명 희 (鄭明希)

1989년 2월 서울대 계산통계학과 졸업(학 사). 1991년 12월 미국 The University of Texas at Austin 대학원 응용통계학 과 졸업(석사). 1997년 8월 미국 The University of Texas at Austin 대학원 산업공학과 졸업(공학박사). 1997년 8월~

1998년 2월 삼성 SDS 선임연구원, 2005년 3월~2006년 2 월 미국 The University of Texas at Austin 부설 Center for Space Research 연구교수, 1998년 3월~현재 안양대 공대 디지털미디어학과 교수. 주 관심분야: 영상처리, 고전 압, 대 전류 마이카 커패시터 개발 Tel: 031-467-0963

E-mail : mhjung@anyang.ac.kr

윤 의 중 (尹宜重)

1985년 2월 고려대 공대 전자공학과 졸 업(학사). 1988년 12월 미국 The University of Texas at Austin 대학원 전기공학과 졸업(석사). 1994년 5월 미국 The University of Texas at Austin 대 학원 전기공학과 졸업(공학박사). 1994년

6월~1996년 8월 미국 The University of Texas at Austin 부설 Center for Magnetics Post-Doctor 연구원, 2004년 9월~2005년 8월 미국 The University of Texas at Austin 부설 나노입자연구소 연구교수, 1996년 9월~ 현재 호서대 시스템제어공학과 교수. 주 관심분야: RF 주 파수에서 동작하는 미소자성소자의 개발, 자성체 나노입 자 합성 및 개발, 고 에너지 전자빔 조사 및 plasma 처리 에 의한 ZnO, AZO, IGZO 특성 최적화와 이들 박막을 이 용한 optoelectronic device 개발, chip inductor 개발, 고 전압, 대 전류 마이카 커패시터 개발 Tel : 041-540-5675

Fax : 041-540-5587

E-mail : ejyun@hoseo.edu