DOI QR코드

DOI QR Code

수종운동체 적용을 위한 샌드위치 복합재 원통의 좌굴 해석 및 시험

Buckling Analysis and Test of Composite Sandwich Cylinder for Underwater Application

  • 김지선 (경상대학교 항공우주특성화대학원 항공우주공학) ;
  • 이경찬 (경상대학교 항공우주특성화대학원 항공우주공학) ;
  • 권진회 (경상대학교 항공우주시스템공학과.항공기부품기술연구소) ;
  • 최진호 (경상대학교 기계공학부.항공기부품기술연구소) ;
  • 조종래 (한국해양대학교 기계정보공학부) ;
  • 조상래 (울산대학교 조선해양공학부) ;
  • 조윤식 (국방과학연구소)
  • 발행 : 2011.08.31

초록

본 연구에서는, 복합재 샌드위치를 수중운동체용 구조물에 적용하기 위한 기초연구로서, 샌드위치 복합재 원통의 제작, 좌굴 해석 및 시험 방법, 중량저감 효과를 분석하였다. 우선 변재에 주름이 생기지 않도록 하는 2단계 샌드위치 제작 방법을 소개하고, 이를 사용하여 원통을 제작하여 수압시험을 수행하였다. 동시에 MSC Nastran의 셀요소와 고체요소를 사용한 유한 요소해석을 수행하여 시험결과와 비교하였다. 시험과 해석의 결과 비교로부터 선형 유한요소해석으로도 샌드위치 원통의 좌굴압력을 3% 내외의 오차로 정확히 예측할 수 있음을 확인하였다. 또한 필라멘트 와인딩 원통에 대한 인자연구를 통해 샌드위치를 사용할 경우 동일한 지지압력에서 필라멘트 와인딩 원통보다 최소 30% 이상 무게가 줄어드는 것을 확인하였다.

In this paper, as a basic research to apply the composite sandwich to underwater vehicle, the manufacturing, analysis and test methods, and weight saving effect of a composite sandwich cylinder under external pressure were studied. A two-step manufacturing method to prevent the wrinkling of the sandwich cylinder face was proposed and the three cylinders were made and tested. Finite element results based on the shell and solid model using MSC.Nastran were compared with test results. The comparison showed that the linear finite element analysis using the shell and solid elements can predict the buckling pressure of the sandwich cylinder with approximately 3% difference. The parametric study of the filament wound cylinders revealed that the composite sandwich can reduce the weight of the cylinder more than 30% compared with the filament wound cylinder supporting the same pressure.

키워드

참고문헌

  1. C. T. F. Ross, "A Conceptual Design of an Underwater Vehicle," Ocean Engineering, Vol. 33, 2006, pp. 2087-2104. https://doi.org/10.1016/j.oceaneng.2005.11.005
  2. H. L. T. Nguyen, I. Elishakoff and V. T. Nguyen, ''Buckling under the External Pressure of Cylindrical Shells with Variable Thickness," International Journal of Solids and Structures, Vol. 46, No. 24, 2009, pp. 4163-4168. https://doi.org/10.1016/j.ijsolstr.2009.07.025
  3. G. Gusic, A. Combescure, and J. F. Jullien ''The Influence of Circumferential Thickness Variations on the Buckling of Cylindrical Shells under External Pressure," Computers & Structures, Vol. 74, No. 4, 2000, pp. 461-477. https://doi.org/10.1016/S0045-7949(99)00053-X
  4. S. H. Hur, H. J. Son, J. H. Kweon, and J. H. Choi, "Postbuckling of Composite Cylinders under External Hydrostatic Pressure," Composite Structures, Vol. 86, No. 1-3, 2008, pp. 114-124. https://doi.org/10.1016/j.compstruct.2008.03.028
  5. C. J. Moon, I. H. Kim, B. H. Choi, J. H Kweon, and J. H. Choi, "Buckling of Filament Wound Composite Cylinders Subjected to Hydrostatic Pressure for Underwater Vehicle Applications," Composite Structures, Vol. 92, No. 9, 2010, pp. 2241-2251. https://doi.org/10.1016/j.compstruct.2009.08.005
  6. M. Yazdanil, H. Rahimi, A. A. Khatibi, and S. Hamzeh, "An Experimental Investigation into the Buckling of GFRP Stiffened Shells under Axial Loading," Scientific Research and Essay, Vol. 4, No. 9, 2009, pp. 914-920
  7. M. Buragohain and R. Velmurugan, "Study of Filament Wound Grid-stiffened Composite Cylindrical Structures," Composite Structures, Vol. 93, No. 2, 2011, pp. 1031-1038. https://doi.org/10.1016/j.compstruct.2010.06.003
  8. J. R. Vinson, The Behavior of Sandwich Structures of Isotropic and Composite Materials, Technomic Pub. Co., Lancaster, PA, 1999.
  9. W. C. Huang and C. F. Ng, "Sound Insulation Improvement using Honeycomb Sandwich Panels," Applied Acoustics, Vol. 53, No. 1-3, 1998, pp. 163-177. https://doi.org/10.1016/S0003-682X(97)00033-9
  10. J. J. Sargianis and J. Suhr, "Noise Mitigation and Wave Number Characterization in Sandwich Structures," Journal of the Acoustical Society of America, Vol. 129, No. 4, 2011, pp. 2416-2416.
  11. R. Zhou and M. J. Crockcr, "Sound Transmission Loss of Foam-Filled Honeycomb Sandwich Panels using Statistical Energy Analysis and Theoretical and Measured Dynamic Properties," Journal of Sound and Vibration, Vol. 329, No. 6, 2010, pp. 673-686. https://doi.org/10.1016/j.jsv.2009.10.002
  12. 우리의 해군 (2011 년 7월 [2011 년 3월 29일 검색]). "잠수함의 스텔스 기술." [온라인게시물-], available from world wide web @ http://www.roknavy.com/joypark/2-6.htm
  13. 이헌곤, 김상현, "잠수함 국외 기술 동향", 대한조선학회지, 제44권 제3호, 2007, pp. 3-6.
  14. G. A. Kardomateas, G. J. Simitses, L. Shen, and R. Li, "Buckling of Sandwich Wide Columns," International Journal of Non-Linear Mechanics, Vol. 37, No. 7, 2002, pp. 1239-1247. https://doi.org/10.1016/S0020-7462(01)00145-7
  15. W. Szyc, Z. Laszczyk, and K. Magnucki, "Elastic Buckling of an Axially Compressed Sandwich Cylindrical Panel with Three Edges Simply Supported and One Edge Free," Thin-Walled Structures, Vol. 44, No. 8, 2006, pp. 910-918. https://doi.org/10.1016/j.tws.2006.07.004
  16. G. A. Kardomateas, "'An Elasticity Solution for the Global Buckling of Sandwich BeamslWide Panels With Orthotropic Phases," Journal of Applied Mechanics, Vol. 77, No. 2, 2010, pp. 15-21.
  17. V. P. Veedu and L. A. Carlsson, "Finite-Element Buckling Analysis of Sandwich Columns Containing a Face/core Debond," Composite Structures, Vol. 69, No. 2 2005, pp. 143-148. https://doi.org/10.1016/j.compstruct.2004.06.005
  18. A. Muc and P. Zuchara, "Buckling and Failure Analysis of FRP Faced Sandwich Plates," Composite Structures, Vol. 48, No. 1-3, 2000, pp. 145-150. https://doi.org/10.1016/S0263-8223(99)00087-2
  19. MSC NASTRAN User's Guide.

피인용 문헌

  1. Optimization of composite sandwich cylinders for underwater vehicle application vol.96, 2013, https://doi.org/10.1016/j.compstruct.2012.08.055