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Design of a bilinear robust controller for a hydrostatic driver

Hydrostatic 구동기에 관한 Bilinear 강인 제어기 설계
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Abstract：이 논문은 비선형 시스템에 대해 bilinear 강인제어기를 설계하는 새로운 방법을 제시한다. 이 설계 

방법은 골칫거리인 비선형 영향을 나타내는 무거운 질량을 가지고 진동하는 시스템을 제어하기 위한 새로

운 대안이고 진전된 방법이다. 이 설계 과정에, hydrostatic 구동기로 구동되는 킬(용골)이 주어진다. 첫 단계

로, 킬은 물리적으로 여러 한정된 질량으로 모델화된다. 물리적 모델에 근거한 수학적인 모델을 유도하는 

방법은 해밀턴 원리를 적용한 유한요소법을 사용하였다. 즉, 수학적 모델은 여러 서브시스템으로 구성된다. 
이것은 주어진 물리적인 시스템에 대해 기준이 되는 시스템이다. 회전하는 구동기에 대한 물리적 모델에 근

거하여, 과도 거동은 구동기의 베어링에서 측정되는 운동 현상으로부터 유도된다. 물리적인 시스템은 

bilinear 시스템으로 구성하였다. 이 시스템에 근거하여, 요트 킬의 거동을 제어하도록 bilinear 관측기를 설계

한다. 구동기의 속도, 토크, 밸브에서의 유량 등이 관측기를 구성하는데 필요한 데이터들이다. 시뮬레이션 

결과에 의하면 비선형성에 대한 추정과 보상을 통하여 무거운 질량을 갖는 회전축에 대한 위치와 힘을 제

어하는 설계에 유용한 접근법임이 증명되었다.
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1. Introduction 

From the viewpoint of the increasing complexity 

and high requirements of the structures of modern 

control systems, the nonlinear behaviors of a 

system are strongly considered. Especially, when 

the interest comes to dynamic behavior by high 

signal amplitude or various operating points, the 

simplified model is used as approximation of 

system behavior. There are some methods of 

bilinearization by model adaption
1)
 which is used 

the different operating points, and by parameter 

identification.2) One of the interesting and 

important application’s areas is hydrostatic rotating 

transition drivers. These systems show highly 

nonlinear grade, but these must be often precisely 

controlled even in the range of the total velocity 

and load, where the linear design strategies are 

limited. The main points of the interest are 

regarded the considered system as the bilinearized 

system by an alternative way of system 

description and control structure for the nonlinear 

estimation and compensation. The controller can be 

divided into two different types : one is with 

decentralized structure and the other is centralized 

one. By decentralized controller, each part of a 

driver is considered independently of the others, 

and implemented with a simple linear controller. 

The nonlinear coupling effects between the joints 

are neglected. This concept is referred to as 

independent joint control and it was one of the 

first methods used in the area of joint structure 

control. As drivers have to do more demanding 

jobs such as higher working-velocities and higher  

precision of positioning under the huge weight, 

different concepts to improve the methods of 

control design have been introduced to consider 
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the nonlinear coupling effects. By one group of 

these improved controllers the decentralized 

structure is kept and the nonlinear coupling effects 

are compensated- either with the method of 

computed torque by feed forwarding the coupling 

torques obtained from the desired trajectories, or 

with the method of joint torque control by the 

feedback of coupling torque which is measured at  

each joint. Unlike the above mentioned methods, 

another group of these improved controllers use a 

centralized structure, in which is considered as a 

whole as multi-variables system, nonlinear effects 

are decoupled and compensated using the method 

of exact linearization and decoupling by state 

feedback which is linear control theory. The 

centralized control approach called the method of 

exact limearization is on the one hand methodically 

more precise than one of the decentralized 

concepts in the method of computed torque, since 

the actual but not the desired position and velocity 

information is used; on the other hand it is more 

involving due to the on-line state feedback than 

the latter, in which the required feed forwarding 

torques by robot or displacement by rotating shaft 

can be computed off-line. In both cases, however, 

a complete knowledge of the dynamic model of 

driver is assumed. Incompletely-known model 

parameters, varied operating conditions like 

payload variations on rotating shaft or motor, the 

varied frictional forces and so on lead to the need 

for an additional robust control design. This 

problem disappears, if another decentralized control 

concept named the method of torque control is 

used, since parameter inaccuracies, payload 

variations and varied frictional effects together 

with the nonlinear coupling forces are recorded by 

the measurement of torque or displacement. 

However, this method suffers from the drawback 

that it needs additional measuring devices as 

commercial machineries have. In this paper, an 

analytical system is going to be transformed into a 

bilinear system (BLS) and an approach of 

bilinearization of a system for a hydraulic rotating 

shaft and a control design modified with the Relay 

with hysteresis and sgn, the so-called nonlinearity 

estimation and compensation is introduced, where 

these valve displacements can be estimated with 

decentralized bilinear state observers and 

nonlinearities can thus be compensated by the 

feedback of these estimated values. The results 

will be compared with the methods of analytic 

linear system (ALS).  The idea of nonlinearity 

estimation and compensation in ALS was 

introduced in Muller.
3) 
 Based on a fictitious model 

of the time behavior of the nonlinearities, a state 

observer of an extended linear dynamic system is 

designed, which results in an estimate of the 

nonlinear effects. These nonlinearities are then 

constructed by the estimated signals by applying 

disturbance rejection control techniques. Using this 

method to design robust decentralized position 

controllers for both rigid and elastic multi-body 

system has been systematically investigated.
3,4) 
  

Fig. 1 A hydrostatic driver.

  In this paper the given system jointly connected 

by rotating shaft and the payloads will at first be 

described into the ALS and transformed into BLS, 

and give a whole description how the method of 

nonlinearity estimation and compensation is used 

to design a robust decentralized controller for the 

considered system. Then simulation’s results of a 

rotating shaft and the heavy payload are given, 

which will confirm the high performance of this 
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control concept, even if the nonlinear coupling 

effects are considered.  Comparisons between the 

method of exact linearization for ALS and the way 

of BLS are also made, which will demonstrate the 

advantages of the proposed approach. 

   2. Model of driver dynamics 

The given physical model Fig. 1 can be written 

mathematical form generally as follows.  

          (1)

    (2)

where ∈  is state vector, and   is vector of 
measurement. 

From Eq. (1), the dynamic behavior of joint 

system can be modeled by analogy to Spong 5)

as

       (3)

where   is the vector of rotating shaft coordinates, 

  the non-diagonal, positive definite mass 

matrix. Since all nonlinear effects will be 

considered as a whole by following control design 

methods, the friction and the backlash as well as 

the gravitational forces are summarized in one 

vector  . The vector   represents the 

valve-room displacement. The equation can be 

written in a general form as follows.

         (4)

    (5)

Here,   denotes system matrix,   presents input 

matrix, and   illustrates measurement matrix. The 

vectors      show the displacement, 

velocity and output, respectively. 

3. Control design methods

3.1 Exact linearization

According to Beater1), multi-variables controller 

can be designed with the method of bilinearization 

based on Eq. (3). The driver torques
 

 
is chosen 

herewith as 

      (6)

Considering the regularity of the mass matrix 

  a decoupled linear system

    (7)

can be obtained using Eq. (3).  Here   is a new 

input vector. For Eq. (4), simple linear controllers 

can be designed. If, for example, a desired 

trajectory    with the desired velocity 
  and 

acceleration   is to be realized, it can thus be 

reached by the feedback

     
        (8)

i.e.

  
  

      
(9)

where   and   are diagonal matrices with 

positive diagonal elements which determine the 

dynamics of the controllers. The Eq. (3) can be 

written in the general form



           

(10)

where ∈

3.2 Bilinearization approximation

There are two ways to the bilinearization 

approximation. One is the mathematical 

bilinearization of a system by Carleman
6)
 that 

causes the fast increase of system order due to 

the small model errors and results in high cost, 

the other is the method of model adaption. In this 

category, Beater1) showed bilinearization with 

linear model, which is treated with the various 

operating points. Dorissen
7)
 developed a way based 

on the discrete time system identification which 

needs impulse excitation at an input so as to 

create a Markov parameter at an output as a very 



Design of a bilinear robust controller for a hydrostatic driver

- 68 -

useful substitute model. For this process a very 

useful substitute model is needed. The last model 

is the application of parameter identification.
2)
 As a 

disadvantage, this process demands an experience 

of a recursive algorithm for the selection of start 

value.  But it has advantage in structure 

characteristics such as observer, observability, 

control, and canonical structure. Those ways let 

the  Eq. (9) write down 



       

 (11)

where      are constant matrices of 

appropriate dimension.

3.3 Stability for BLS

For the BLS the stability must be considered. 

There are some analysis processes for the 

stability: linear feedback, square state feedback and 

linearized state space feedback.  Now with

     (12)

where   is a constant matrix, it is convenient to 

rewrite BLS Eq. (11) as follows.

       (13)

            (14)   

For a Lyapunov function of Eq. (13), choose the 

simple quadratic form given by

      (15) 

where   is a real symmetric matrix. Then

    
   

        
  
  

  (16)

    
   

  (17) 

The linear feedback of the system Eq. (10) must 

content the requirement of Lyapunove function like 

in linear theory, i.e. eigen values of 

       (18)

have to exhibit the negative real parts as follows : 


       in terms of the proof 

of the region of the unit circle. Additionally, the 

terms of   must be positive.   

 Unfortunately, it is usually impossible to stabilize 

globally the BLS with linear feedback control. 

Therefore, we limit this case to local asymptotic 

stability. Another way to guarantee the globally 

asymptotical stability for the system is the 

quadratic state feedback 
8)
 for 

    (19)


     

3.4 Observability for BLS

 The method of linear approximation was able to 

prove separation principle for the well-known 

nonlinear system which is known from linear 

system theory since 30 years but the results is 

theoretical and hard to use in the practical 

application because the statement over the region 

of inside of unit circle is unclear for stability. In 

terms of this problem, Schwarz
9)
 presented a 

special nonlinear observer for BLS from Keller
10) 

as Fig. 2  if the BLS has a sufficient space state 

model as follows.  It  is constructed like Fig. 2. 

Fig. 2 BLS from Keller10)
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  
   

   
(20)

where      ∀    .   represents 

identity matrix.  From the above statement an 

observer with linear error dynamic can be 

designed as follows.










     
     

            

   

 
(21) 

where   is a feedback control factor for stability 

3.5 Nonlinearity Estimation and Compensation  

Starting point for the design of decentralized 

controllers with the method of nonlinearity 

estimation and compensation is still the coupled 

system Eq. (3). At first it is written down in a 

decoupled form relative to the single axis. For this 

the mass matrix   is divided into a constant 

diagonal matrix  , the mean values of the 

moments of inertia, and a remaining position 

dependent part ∆
   ∆  (22)

These mean values can be chosen, for example, 

with regard to a typical working-space of the 

rotating shaft or along the desired trajectory. 

Summarizing further for each axis   all nonlinear 

terms in ,

  
 

 ∆       (23)

where   is the number of joints, Eq. (3) with Eq. 

(22-23) can thus be separately considered for a 

single axis :

 


       (24)

Leaving out index   for the shake of brevity, a 

state space description of this one-axis model can 

be obtained with the state vector      

   (25)

     (26)

With the matrices

 


 

 

 
   








 


  (27)

     (28)

Here the measurement of the joint coordinate   is 

assumed. The objective of the position control of a 

robot is often that the joint coordinate   has to 

track along a desired trajectory      

determined by path planning. The control error is 

thus defined as     or in state space form:

    (29)

where

         (30)

The design of each decentralized controller is 

based on the state space model Eq. (9-14). On the 

one hand, the coupling effects and other 

nonlinearities contained in   are compensated with 

the method of nonlinearity estimation and 

compensation. On the other hand the tracking 

control is reached by a feed forward, which is 

determined similar to the design of a disturbance 

rejection control.
11)
 Altogether an asymptotically 

stable control with

 →   for →∞  (31)

is the whole design objective.

The time signal   of the nonlinearities and 

coupling is approximated appropriately by a time 

function, which is itself solution of a fictitious 

linear dynamic system

≈   (32) 

     (33)

It was shown in Muller3) that this approximation 

can be at best carried out with harmonic function, 

so that a model is chosen in Eq. (32-33) 
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        (34)

The desired trajectory      is known. For 

the feed forward control the variables   and 

  are additionally needed. Although they are 

theoretically available too, but usually they don’t 

exactly correspond to the derivatives of the 

actually requested trajectory due to possible 

disturbances.  Therefore, they are estimated by an 

observer which is constructed like Eq. (32-33) as 

well, see 3,4,11)

≈   (35)

     (36)

The approximation is based on step and ramp 

functions, here

        










  
  
  

  (37)           

is selected. The design of observers to estimate 

the signal such as  
  and   if 

needed, is based on a linear system, which is 

obtained by inserting Eq. (32-37) in Eq. (25-30);

























  
  
  

























   (38)



 







 


  

  













  (39)

     













 (40)

This extended system with the given system 

matrices is completely observable.  Therefore, an 

observer can be designed according to one of 

usual methods, a quadratic optimal identity 

observer is determined here.  It is shown at the 

same time that this observer can be separated into 

two parts, one for     and the other for 



















 


   

  




 






 







 





 (41)

    
  (42)

The desired estimated values are then obtained 

from 

 
  (43)

With the estimated variables    and 
 , a 

feedback controller

 

   (44)

is constructed. The gain matrix   of the state 

feedback can be set with standard methods such 

as pole assignment, where the complete 

controllability of the matrices     is fulfilled.  

The feedback gain   for the compensation of 

the nonlinearities and coupling effects and the gain 

matrix   for the feed forwarding of the desired 

trajectory are determined from the following 

equations 

           (45)

     (46)

and

            (47)

   (48)

which are resulted from Eq. (31). The solutions for 

   and    are

      (49)

         (50)

  and are matrices which characterize the 

stationary behavior of   depending on   

and 

With this the controller is finally obtained 
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  

   (51)

3.6 Comparison

Comparing the control law Eq. (44) with the 

controller Eq. (6) from the method of exact 

linearization in section 3.1, an formal agreement 

between both of them is found out. Whereas Eq. 

(6) needs an exact knowledge of the model 

parameters of   and , Eq. (44) shows 

the advantage that uncertain models can be taken, 

here only the values of the different 
′ s have to 

be chosen and all the original model effects can be 

grasped  in ′  s by the used state observers.
The robustness of the controller Eq. (44) can 

easily be verified. If the parameters in the system 

description Eq. (1) are inaccurate, for example, due 

to varied payload or unknown friction torques 

appear, the real system behavior must then be 

described with a modified model 

 ′  ′     (52)

with a changed mass matrix  ′  and a changed 
vector of nonlinear effects ′  
  Whereas the controller Eq. (9) is still based on 

the nominal model Eq. (1) so that mismatches 

between  ′  and   as well as between ′  and   
exist, the controller Eq. (44) has obviously regard 

to the changed system behavior. As in Eq. (22), let 

 ′   ∆ ′  (53)

  Then one has only to replace the term   in the 

description Eq. (24) by 


′  

 

 ∆′  ′       (54)

similar to Eq. (23).  Because the design of the 

controller Eq. (44) is based on the fact that - 

and thus 
′- is interpreted as an unknown 

function and to be estimated by  , the controller 

fulfills its task also in the case of changed system 

behavior. The controller Eq. (44) is structurally 

robust against parameter inaccuracies and original 

model effects. 

4. Modeling and simulation on hydrostatic 

rotating shaft driver

The proposed control methods are demonstrated 

with simulation on a dynamic model of hydrostatic 

rotating shaft driver. For the simulation the inertia 

parameters reported in Schwarz
9),12)
 are used






























     









  

     
     
     
     

























































  (55)    

    shaft angle  position

 
  shaft angle  velocity

    pressure in the room

    pressure in the room

    valve display distance

   valve display velocity

  : load mass

  : eigen value of matrix of input in the valve

  : eigen value of matrix of output in the valve

  : torque

  : viscosity of oil

And the elements in the last term denote

 

 
     (56)




        (57)

  

  
         (58)

where 

  : oil volume of the input

  : oil volume of the output

  : voltage of valve in input
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   : friction rates

  : volume in chamber A

  : volume in chamber B

  : oil volume in hydro motion by input

  : forward translating force

  : backward translating force

The total position error equation is defined as 

follows. 

              (59)

where   and   represent actual position in 

x-axis, y-axis, and z-axis, respectively, and       

subscript   means the desired position 

Fig. 3 Position-error compensation by BLS for real 
system

If the actual position tracks the desired one 

exactly,    .

  At first the control behavior is shown when the 

parameters of the system model are exactly 

known, see Fig. 3. The method of exact 

linearization gives no position error as expected, 

whereas this appears by the control design with 

the method of nonlinearity estimation and 

compensation especially at the beginnr asof the 

simurroron, becausimuhe observers robsire a 

certain time until uhey can give right estimates. 

The advantage of the control method of 

nonlinearity estimation and compensation is then 

recognized, when real rotating shaft problems are 

considered. 

The nonlinear force compensation in x-axis and 

y-axis for ALS and BLS is shown in the Fig. 4 

and Fig. 5, respectively. 

Fig. 4 gives the comparison of this method with 

method of exact linearization under the conditions 

that friction effects described in (Armstrong, 1988) 

and a load with 2kg are taken into account. The 

position error of the proposed method is much 

smaller as the existed one except at the very 

beginning.  Fig. 5 illustrates the nonlinear force 

compensation by BLS for real system. When the 

rotating shaft meets the given impact from outside 

(0.15s) the system shows the strong force 

nonlinearity and compensation starts immediately

Fig. 4 Nonlinear force compensation in x-axis by 
ALS and BLS 

Fig. 5 Nonlinear force compensation in y-axis by 
ALS and BLS 

5. Conclusions

The method of nonlinearity estimation and 

compensation has been proved to be a suitable 
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approach for the design of robust position and 

forces controllers for rotating shaft connected with 

heavy mass. In addition to its robustness, its 

decentralized structure offers additional advantages 

such that the concept of independent joint control 

can further be used, even in an improved manner.  

The requirements on the modeling of the dynamics 

are very low. And the control design can be easily 

done because it is based only on linear system 

theory. Simulation results have shown the 

efficiency of the proposed control design method.
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Appendices

  The data used in simulation are given as follows

 

  











     
     
     
     
     
     

The nominated elements    and   are 

-0.0084, -0.8321, -0.3747, and -0.0321 

respectively. The others are as follows.

≒  , =0.0071, =0.0114

 

 
   

  

 
        
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  

  
       

=5.55x10-3 m3/s, =90.0 V, =0.95,
=2.085, =-5.87, =6.25x10-6m2/s,
=2000 , =2000 ,    : 220rad,
=220rad/s.,     : 100 ,     :95 ,

   : 0.2m,  :0.05m/s


