DOI QR코드

DOI QR Code

Sensorless Passivity Based Control of a DC Motor via a Solar Powered Sepic Converter-Full Bridge Combination

  • Linares-Flores, Jesus (Instituto de Electronica y Mecatronica, Universidad Tecnologica de la Mixteca) ;
  • Sira-Ramirez, Hebertt (Centro de Investigacion y de Estudios Avanzados del IPN CINVESTAV) ;
  • Cuevas-Lopez, Edel F. (Instituto de Electronica y Mecatronica, Universidad Tecnologica de la Mixteca) ;
  • Contreras-Ordaz, Marco A. (Instituto de Electronica y Mecatronica, Universidad Tecnologica de la Mixteca)
  • Received : 2010.11.04
  • Published : 2011.09.20

Abstract

This article deals with the sensor-less control of a DC Motor via a SEPIC Converter-Full Bridge combination powered through solar panels. We simultaneously regulate, both, the output voltage of the SEPIC-converter to a value larger than the solar panel output voltage, and the shaft angular velocity, in any of the turning senses, so that it tracks a pre-specified constant reference. The main result of our proposed control scheme is an efficient linear controller obtained via Lyapunov. This controller is based on measurements of the converter currents and voltages, and the DC motor armature current. The control law is derived using an exact stabilization error dynamics model, from which a static linear passive feedback control law is derived. All values of the constant references are parameterized in terms of the equilibrium point of the multivariable system: the SEPIC converter desired output voltage, the solar panel output voltage at its Maximun Power Point (MPP), and the DC motor desired constant angular velocity. The switched control realization of the designed average continuous feedback control law is accomplished by means of a, discrete-valued, Pulse Width Modulation (PWM). Experimental results are presented demonstrating the viability of our proposal.

Keywords

References

  1. E. Mineiro, S. Daher, F. L.M. Antunes, and C. M. T. Cruz, "Photovoltaic system for supply public illumination in electrical energy demand peak," in Proceeding of Applied Power Electronics Conference and Exposition (APEC), Vol. 3, pp. 1501-1506, 2004.
  2. L. Egiziano, A. Giustiniani, G. Lisi, G. Petrone, G. Spagnuolo, and M. Vitelli, "Experimental characterization of the photovoltaic generator for a hybrid solar vehicle," in Proceeding of IEEE ISIE, pp. 329-334, 2007.
  3. T. Friedli, S. D. Round, and J. W. Kolar, "Modeling the space elevator–A project oriented approach for teaching experimental power electronics," in Proceeding of European Conference on Power Electronics and Applications, pp. 1-10, 2007.
  4. J. R. Higinbotham, J. R. Moisan, C. Schirtzinger, M. Linkswiler, J. Yungel, and P. Orton, "Update on the development and testing of a new long duration solar powered autonomous surface vehicle," in Proceeding of Oceans, pp. 1-10, 2008.
  5. E. E. Jimenez-Toribio, A. A. Labour-Castro, F. Mu˜niz-Rodriguez, H. R. Perez-Hernandez, and E. I. Ortiz-Rivera, "Sensorless sontrol of SEPIC and cuk converters for DC motors using solar panels," in Proceeding of IEEE International Electric Machines and Drives Conference (IEMDC), pp. 1503-1510, 2009.
  6. J. Linares-Flores and H. Sira-Ramirez, "DC motor velocity control through a DC-to-DC power converter," in Proceeding of 43rd IEEE Conference on Decision and Control, pp. 5297-5302, 2004.
  7. J. Chiasson, Modeling and High-Performance Control of Electric Machines, John Wiley, New York, 2005.
  8. H. Fadil, F. Giri, F. Z. Chaoui, and O. El Magueri, "Accounting for input limitation in the control of buck power converters," IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 56, No. 6, pp. 1260-1271, Jun. 2009. https://doi.org/10.1109/TCSI.2009.2015171
  9. J. Linares-Flores, J. Reger, and H. Sira-Ramirez, "Load torque estimation and passivity-based control of a boost-converter/DC-motor combination," IEEE Trans. Contr. Syst. Technol., Vol. 18, No. 6, pp. 1398-1405, Nov. 2010.
  10. J. Linares-Flores, J. Reger, and H. Sira-Ramirez, "A time-varying linear state feedback tracking controller for a Boost-converter driven DC machine," in Proceeding of 4th IFAC-Symp. Mechatron. Syst., Heidelberg, Germany, 2006.
  11. J. Linares-Flores, J. Reger, and H. Sira-Ramirez, "Speed-sensorless tracking control of a DC-motor via a double Buck-converter," in Proceeding of 45th IEEE Conference on Decision and Control, pp. 6229- 6234, 2006.
  12. M. M. R. Ahmed and G. A. Putrus, "Fuzzy logic speed control of D.C. motors fed by single-ended primary inductance convertes (SEPIC)," in Proceeding of the 41st Universities Power Engineering Conference (UPEC), pp. 343-347, 2006.
  13. H.-E. Park and J.-H. Song, "A dP/dV feedback-controlled MPPT method for photovoltaic power system using II-SEPIC," Journal of Power Electronics, Vol. 9, No. 4, pp. 604-611, Jul. 2009.
  14. H. Shu-Hung Chung, K. K. Tse, S. Y. Ron Hui, C. M. Mok, and M. T. Ho, "A novel maximum power point tracking technique for solar panels using a SEPIC or cuk converter," IEEE Trans. Power Electron., Vol. 18, No. 3, pp. 717-724, May 2003. https://doi.org/10.1109/TPEL.2003.810841
  15. S. J. Chiang, H.-J. Shieh, and M.-C. Chen, "Modeling and control of PV charger system with SEPIC converter," IEEE Trans. Ind. Electron., Vol. 56, No. 11, pp. 4344-4353, Nov. 2009. https://doi.org/10.1109/TIE.2008.2005144
  16. H. Sira-Ramirez and R. Silva-Ortigoza, Control Design Techniques in Power Electronics Devices, Power Systems Series, Springer-Verlag, London, U.K., 2006.
  17. E. I. Ortiz Rivera and F. Z. Peng, "Linear reoriented coordinates method," in Proceeding of IEEE Internacional Conference on Electro/ Information Technology, pp. 459-464, 2006.
  18. L. Fangrui, D. Shanxu, L. Fei, L. Bangyin, and K. Yong, "A variable Step Size INC MPPT Method for PV Systems," IEEE Trans. Ind. Electron., Vol. 55, No. 7, pp. 2622-2628, Jul. 2008. https://doi.org/10.1109/TIE.2008.920550
  19. SX50U data sheet–http://www.oksolar.com/panels/solarex.html, August 13th 2010.
  20. H. Khalil, Nonlinear Systems, Third Edition, Prentice-Hall, NJ, 2002.
  21. H. Y. Kanaan and K. Al-Haddad, "A novel averaged-model-based control of a SEPIC power factor corrector using the input/output feedback linearization technique," in Proceeding of IEEE 36th Power Electronics Specialists Conference, PESC 005, pp. 565-571, 2005.

Cited by

  1. Robust Passivity-Based Control of a Buck–Boost-Converter/DC-Motor System: An Active Disturbance Rejection Approach vol.48, pp.6, 2012, https://doi.org/10.1109/TIA.2012.2227098
  2. Three-Level SEPIC with Improved Efficiency and Balanced Capacitor Voltages vol.16, pp.2, 2016, https://doi.org/10.6113/JPE.2016.16.2.447
  3. Assessment of an Average Controller for a DC/DC Converter via Either a PWM or a Sigma-Delta-Modulator vol.2014, 2014, https://doi.org/10.1155/2014/196010
  4. A Sensorless PMDC Motor Speed Controller with a Logical Overcurrent Protection vol.13, pp.3, 2013, https://doi.org/10.6113/JPE.2013.13.3.381
  5. Sensorless Load Torque Estimation and Passivity Based Control of Buck Converter Fed DC Motor vol.2015, 2015, https://doi.org/10.1155/2015/132843
  6. An assessment on performance of DC–DC converters for renewable energy applications vol.58, 2016, https://doi.org/10.1016/j.rser.2015.12.057
  7. Robust Tracking Controller for a DC/DC Buck-Boost Converter–Inverter–DC Motor System vol.11, pp.10, 2018, https://doi.org/10.3390/en11102500
  8. DC/DC Boost Converter–Inverter as Driver for a DC Motor: Modeling and Experimental Verification vol.11, pp.8, 2018, https://doi.org/10.3390/en11082044
  9. A DC/DC Buck-Boost Converter–Inverter–DC Motor System: Sensorless Passivity-Based Control vol.6, pp.2169-3536, 2018, https://doi.org/10.1109/ACCESS.2018.2846614