DOI QR코드

DOI QR Code

Pharmacokinetic Interaction between Nisoldipine and Repaglinide in Rats

  • Received : 2011.08.01
  • Accepted : 2011.09.19
  • Published : 2011.10.30

Abstract

The purpose of this study was to investigate the effects of nisoldipine on the pharmacokinetics of repaglinide in rats. The effect of nisoldipine on cytochrome P450 (CYP) 3A4 activity and P-glycoprotein (P-gp) were evaluated. The pharmacokinetic parameters of repaglinide were also determined in rats after oral (0.5 $mg{\cdot}kg^{-1}$) and intravenous (0.2 $mg{\cdot}kg^{-1}$) administration of repaglinide to rats without or with nisoldipine (0.3 and 1.0 $mg{\cdot}kg^{-1}$). Nisoldipine inhibited CYP3A4 enzyme activity with a 50% inhibition concentration of 5.5 ${\mu}M$. In addition, nisoldipine significantly enhanced the cellular accumulation of rhodamine-123 in MCF-7/ADR cells overexpressing P-gp. Compared to the oral control group, nisoldipine significantly increased the $AUC_{0-{\infty}}$ and the $C_{max}$ of repaglinide by 46.9% and 24.9%, respectively. Nisoldipine also increased the absolute bioavailability (A.B.) of repaglinide by 47.0% compared to the oral control group. Moreover, the relative bioavailability (R.B.) of repaglinide was 1.16- to 1.47-fold greater than that of the control group. Nisoldipine enhanced the oral bioavailability of repaglinide, which may be attributable to the inhibition of the CYP3A4-mediated metabolism in the small intestine and/or in the liver and to inhibition of P-gp in the small intestine rather than to reduction of renal elimination of repaglinide by nisoldipine. The increase in the oral bioavailability of repaglinide should be taken into consideration of potential drug interactions when co-administering repaglinide and nisoldipine.

Keywords

References

  1. American Diabetes Association (2002) Treatment of hypertension in adults with diabetes. Diabetes Care 25, S71-S73. https://doi.org/10.2337/diacare.25.2007.S71
  2. Bauer, E., Beschke, K., Ebner, T. and Greischel, A. (1997) Biotransformation of [14C] repaglinide in human, cynomolgus monkey, dog, rabbit, rat and mouse. Diabetologia. 1, 326-332.
  3. Bidstrup, T. B., Bjφrnsdottir, I., Sidelmann, U. G., Thomsen, M. S. and Hansen, K. T. (2003) CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide. Br. J. Clin. Pharmacol. 56, 305-314. https://doi.org/10.1046/j.0306-5251.2003.01862.x
  4. Bogaards, J. J., Bertrand, M., Jackson, P., Oudshoorn, M. J., Weaver, R. J., van Bladeren, P. J. and Walther, B. (2000) Determining the best animal model for human cytochrome P450 activities: a comparison of mouse, rat, rabbit, dog, micropig, monkey and man. Xenobiotica. 30, 1131-1152. https://doi.org/10.1080/00498250010021684
  5. Cao, X., Gibbs, S. T., Fang, L., Miller, H. A., Landowski, C. P., Shin, H. C., Lennernas, H., Zhong, Y., Amidon, G. L., Yu, L. X. and Sun, D. (2006) Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm. Res. 23, 1675-1686. https://doi.org/10.1007/s11095-006-9041-2
  6. Chandler, M. H. H., Clifton, G. D., Lettieri, J. T., Mazzu, A. L., Allington, D. R., Thieneman, A. C., Foster, T. S. and Harrison, M. R. (1992) Multiple dose pharmacokinetics of four different doses of nisoldipine in hypertensive patients. J. Clin. Pharmacol. 32, 571-575. https://doi.org/10.1177/009127009203200614
  7. Chang, C., Bahadduri, P. M., Polli, J. E., Swaan, P. W. and Ekins, S. (2006) Rapid identifi cation of P-glycoprotein substrates and inhibitors. Drug Metab. Dispos. 34, 1976-1984. https://doi.org/10.1124/dmd.106.012351
  8. Crespi, C. L., Miller, V. P. and Penman, B. W. (1997) Microtiter plate assays for inhibition of human, drug-metabolizing cytochromes P450. Anal. Biochem. 248, 188-190. https://doi.org/10.1006/abio.1997.2145
  9. Culy, C. R. and Jarvis, B. (2001) Repaglinide: a review of its therapeutic use in type 2 diabetes mellitus. Drugs. 61, 1625-1660. https://doi.org/10.2165/00003495-200161110-00008
  10. Cummins, C. L., Jacobsen, W. and Benet, L. Z. (2002) Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J. Pharmacol. Exp. Ther. 300, 1036-1045. https://doi.org/10.1124/jpet.300.3.1036
  11. El-Houssieny, B. M., Wahman, L. F. and Arafa, N. M. (2010) Bioavailability and biological activity of liquisolid compact formula of repaglinide and its effect on glucose tolerance in rabbits. Biosci. Trends. 4, 17-24.
  12. Gomes, M. B., Giannella-Neto, D., Faria, M., Tambascia, M., Fonseca, R. M., Rea, R., Macedo, G., Modesto-Filho, J., Schmid, H., Bittencourt, A. V., Cavalcanti, S., Rassi, N., Pedrosa, H. and Dib, S. A. (2009) Estimating cardiovascular risk in patients with type 2 diabetes: a national multicenter study in Brazil. Diabetol. Metab. Syndr. 1, 22-28. https://doi.org/10.1186/1758-5996-1-22
  13. Guengerich, F. P., Brian, W. R., Iwasaki, M., Sari, M. A., Ba¨ a¨ rnhielm, C. and Berntsson, P. (1991) Oxidation of dihydropyridine calcium channel blockers and analogues by human liver cytochrome P-450 IIIA4. J. Med. Chem. 34,1838-1844. https://doi.org/10.1021/jm00110a012
  14. Guengerich, F. P., Martin, M. V., Beaune, P. H., Kremers, P., Wolff, T. and Waxman, D. J. (1986) Characterization of rat and human liver microsomal cytochrome P-450 forms involved in nifedipine oxidation, a prototype for genetic polymorphism in oxidative drug metabolism. J. Biol. Chem. 261, 5051-5060.
  15. Han, C. Y., Cho, K. B., Choi, H. S., Han, H. K. and Kang, K. W. (2008) Role of FoxO1 activation in MDR1 expression in adriamycin-resistant breast cancer cells. Carcinogenesis. 29, 1837-1844. https://doi.org/10.1093/carcin/bgn092
  16. Hatorp, V., Won-Chin, H. and Strange, P. (1999) Repaglinide pharmacokinetic in healthy young adult and eldery subjects. Clin. Ther. 21, 702-710. https://doi.org/10.1016/S0149-2918(00)88321-6
  17. Kajosaari, L. I., Niemi, M., Neuvonen, M., Laitila, J., Neuvonen, P. J. and Backman, J. T. (2005) Cyclosporine markedly raises the plasma concentrations of repaglinide. Clin. Pharmacol. Ther. 78, 388-399. https://doi.org/10.1016/j.clpt.2005.07.005
  18. Kaminsky, L. S. and Fasco, M. J. (1991) Small intestinal cytochromes P450. Crit. Rev. Toxocol. 21, 407-422.
  19. Kelly, P. A., Wang, H., Napoli, K. L., Kahan, B. D. and Strobel, H. W. (1999). Metabolism of cyclosporine by cytochromes P450 3A9 and 3A4. Eur. J. Drug Metab. Pharmacokinet. 24, 321-328. https://doi.org/10.1007/BF03190040
  20. Lewis, D. F. V. (1996) Cytochrome P450. Substrate specifi city and metabolism. In: Cytochromes P450. Structure, Function, and Mechanism. Taylor & Francis, Bistrol.122-123.
  21. Marbury, T. M., Ruckle, J. L., Hatorp, V., Andersen, M. P., Nielsen, K. K., Huang, W. C. and Strange, P. (2000) Pharmacokinetic of repaglinide in subjects with renal impairment. Clin. Pharmacol. Ther. 67, 7-15. https://doi.org/10.1067/mcp.2000.103973
  22. Marques, M. P., Coelho, E. B., Dos Santos, N. A., Geleilete, T. J. and Lanchote, V. L. (2002) Dynamic and kinetic disposition of nisoldipine enantiomers in hypertensive patients presenting with type-2 diabetes mellitus. Eur. J. Clin. Pharmacol. 58, 607-614. https://doi.org/10.1007/s00228-002-0528-4
  23. McKinnonand, R. and McManus, M. (1996) Localization of cytochromes P450 in human tissues: Implications for chemical toxicity. Pathology 28, 148-155. https://doi.org/10.1080/00313029600169783
  24. Niemi, M., Backman, J. T., Neuvonen, M., and Neuvonen, P. J. (2003) Effects of gemfi brozil, itraconazole, and their combination on the pharmacokinetics and pharmacodynamics of repaglinide: potentially hazardous interaction between gemfi brozil and repaglinide. Diabetologia 46, 347-351.
  25. Niemi, M., Neuvonen, P. J. and Kivistö, K. T. (2001) The cytochrome P4503A4 inhibitor clarithromycin increases the plasma concentrations and effects of repaglinide. Clin. Pharmacol. Ther. 70, 58-65. https://doi.org/10.1067/mcp.2001.116511
  26. Tubic-Grozdanis, M., Hilfi nger, J. M., Amidon, G. L., Kim, J. S., Kijek, P., Staubach, P. and Langguth, P. (2008) Pharmacokinetics of the CYP 3A substrate simvastatin following administration of delayed versus immediate release oral dosage forms. Pharm. Res. 25, 1591-1600. https://doi.org/10.1007/s11095-007-9519-6
  27. van Harten, J., Burggraaf, J., Ligthart, G. J., van Brummelen, P. and Breimer, D. D. (1989) Single- and multiple-dose nisoldipine kinetics and effects in the young, the middle-aged, and the elderly. Clin. Pharmacol. Ther. 45, 600-607. https://doi.org/10.1038/clpt.1989.80
  28. Wacher, V. J., Salphati, L. and Benet, L. Z. (2001) Active secretion and enterocytic drug metabolism barriers to drug absorption. Adv. Drug Deliv. Rev. 46, 89-102. https://doi.org/10.1016/S0169-409X(00)00126-5
  29. Watkins, P. B. (1992) Drug metabolism by cytochromes P450 in the liver and small bowel. Gastroenterol. Clin. North Am. 21, 511-526.
  30. Zhang, Q., Dunbar, D., Ostrowska, A., Zeisloft, S., Yang, J. and Kaminsky, L. (1999) Characterization of human small intestinal cytochromes P-450. Drug Metab. Dispos. 27, 804-809.