DOI QR코드

DOI QR Code

KR-33028, a Novel Na+/H+ Exchanger-1 Inhibitor, Attenuates Glutamate-Induced Apoptotic Cell Death through Maintaining Mitochondrial Function

  • Lee, Bo-Kyung (College of Pharmacy, Ajou University) ;
  • Lee, Sun-Kyung (Medical Science Division, Korea Research Institute of Technology) ;
  • Yi, Kyu-Yang (Medical Science Division, Korea Research Institute of Technology) ;
  • Yoo, Sung-Eun (Medical Science Division, Korea Research Institute of Technology) ;
  • Jung, Yi-Sook (College of Pharmacy, Ajou University)
  • Received : 2011.09.09
  • Accepted : 2011.10.10
  • Published : 2011.10.30

Abstract

Preciously, we demonstrated that a novel NHE-1 inhibitor, KR-33028 attenuated cortical neuronal apoptosis induced by glutamate. In the present study, we investigated the signaling mechanism of neuroprotective effect of KR-33028 against glutamate-induced neuronal apoptosis, especially focusing on mitochondrial death pathway. Our data showed that glutamate induces a biphasic rise in mitochondrial $Ca^{2+}$ and that KR-33028 significantly prevents the second phase increase, but not the first phase increase in mitochondrial $Ca^{2+}$. Furthermore, KR-33028 restored the ${\Delta}{\Psi}_m$ dissipation and cytochrome c release into cytoplasm induced by glutamate in a concentration-dependent manner. The inhibition of mitochondrial $Ca^{2+}$ overload by ruthenium red also inhibited glutamate-induced apoptotic cell death, mitochondrial membrane potential, ${\Delta}{\Psi}_m$ dissipation and cytochrome c release. These data suggest that inhibition of mitochondrial $Ca^{2+}$ overload is likely to be attributable to anti-apoptotic effect of KR-33028. Taken together, our results suggest that anti-apoptotic effects of NHE-1 inhibitor, KR-33028 may be mediated through maintenance of mitochondrial function.

Keywords

References

  1. Akao, M., O'Rourke, B., Teshima, Y., Seharaseyon, J. and Marban, E. (2003) Mechanistically distinct steps in the mitochondrial death pathway triggered by oxidative stress in cardiac myocytes. Circ. Res. 92, 186-194. https://doi.org/10.1161/01.RES.0000051861.21316.E9
  2. Bae, J. H., Park, J. W. and Kwon, T. K. (2003) Ruthenium red, inhibitor of mitochondrial $Ca^{2+}$ uniporter, inhibits curcumin-induced apoptosis via the prevention of intracellular $Ca^{2+}$ depletion and cytochrome c release. Biochem. Biophys. Res. Commun. 303, 1073-1079. https://doi.org/10.1016/S0006-291X(03)00479-0
  3. Bano, D., Young, K. W., Guerin, C. J., LeFeuvre, R., Rothwell, N. J., Naldini, L., Rizzuto, R., Carafoli, E. and Nicotera, P. (2005) Cleavage of the plasm membrane $Na^+/Ca^{2+}$ exchanger in excitotoxicity. Cell 120, 275-285. https://doi.org/10.1016/j.cell.2004.11.049
  4. Budd, S. L. and Nicholls, D. G. (1996) Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J. Neurochem. 67, 2282-2291.
  5. Choi, D. W. (1988) Glutamate neurotoxicity and disease of the nervous system. Neuron 1, 623-634. https://doi.org/10.1016/0896-6273(88)90162-6
  6. Emaus, R. K., Grunwald, R. and Lemasters, J. J. (1986) Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim. Biophys. Acta. 850, 436-448. https://doi.org/10.1016/0005-2728(86)90112-X
  7. Glunde, K., Dubmann, H., Juretschke, H. P. and Leibfritz, D. (2002) $Na^+/H^+$ exchange subtype 1 inhibition during extracellular acidification and hypoxia in glioma cells. J. Neurochem. 80, 36-44. https://doi.org/10.1046/j.0022-3042.2001.00661.x
  8. Hans, G., Malgrange, B., Lallemend, F., Crommen, J., Wislet-Gendebien, S., Belachew, S., Robe, P., Rogister, B., Moonen, G. and Rigo, J. M. (2005) b-Carbolines induce apoptosis in cultured cerebellar granule neurons via the mitochondrial pathway. Neuropharmacology 48, 105-117. https://doi.org/10.1016/j.neuropharm.2004.09.001
  9. Hartley, Z. and Dubinsky, J. M. (1993) Changes in intracellular pH associated with glutamate excitotoxicity. J. Neurosci. 13, 4690-4699.
  10. Jung, Y. S ., Kim, M. Y., Kim, M. J., Oh, K. S., Yi, K. Y., Lee, S., Yoo, S. E. and Lee, B. H. (2006) Pharmacological profi le of KR-33028, a highly selective inhibitor of $Na^+/H^+$ exchanger. Eur. J. Pharmacol. 535, 220-227. https://doi.org/10.1016/j.ejphar.2006.01.041
  11. Karmazyn, M., Gan, X. T., Humphreys, R. A., Yoshida, H. and Kusumoto, K. (1999) The myocardial $Na^+-H^+$ exchange: structure, regulation, and its role in heart disease. Circ. Res. 85, 777-786. https://doi.org/10.1161/01.RES.85.9.777
  12. Kim, M. J., Moon, C. H., Kim, M. Y., Lee, S., Yi, K. Y., Yoo, S. E., Lee, S. H., Baik, E. J. and Jung, Y. S. (2005) KR-32570, a novel $Na^+/H^+$ exchanger-1 inhibitor, attenuates hypoxia-induced cell death through inhibition of intracellular $Ca^{2+}$ overload and mitochondrial death pathway in H9c2 cells. Eur. J. Pharmacol. 525, 1-7. https://doi.org/10.1016/j.ejphar.2005.09.043
  13. Lee, B. K., Lee, D. H., Park, S., Park, S. L., Yoon, J. S., Lee, M. G., Lee, S., Yi, K. Y., Yoo, S. E., Lee, K. H., Kim, Y. S., Lee, S. H., Baik, E. J., Moon, C. H. and Jung, Y. S. (2009) Effects of KR-33028, a novel $Na^+/H^+$ exchanger-1 inhibitor, on glutamate-induced neuronal cell death and ischemia-induced cerebral infarct. Brain Res. 1248, 22-30. https://doi.org/10.1016/j.brainres.2008.10.061
  14. Matsumoto, Y., Yamanoto, S., Suzuki, Y., Tsuboi, T., Terakawa, S., Ohashi, N. and Umemura, K. (2004) $Na^+/H^+$ exchanger inhibitor, SM-20220, is protective against excitotoxicity in cultured cortical neurons. Stroke 35, 185-190.
  15. Nakayama, R., Yano, T., Ushijima, K., Abe, E. and Terasaki, H. (2002) Effects of dantrolene on extracellular glutamate concentration and neuronal death in the rat hippocampal CA1 region subjected to transient ischemia. Anesthesiology 96, 705-710. https://doi.org/10.1097/00000542-200203000-00029
  16. Park, H. S., Lee, B. K., Park, S., Kim, S. U., Lee, S. H., Baik, E. J., Lee, S., Yi, K. Y., Yoo, S. E., Moon, C. H. and Jung, Y. S. (2005) Effects of sabiporide, a specifi c $Na^+/H^+$ exchanger inhibitor, on neuronal cell death and brain ischemia. Brain Res. 1061, 67-71. https://doi.org/10.1016/j.brainres.2005.09.002
  17. Pedersen, S. F. (2006) The Na(+)/H(+) exchanger NHE1 in stressinduced signal transduction: implications for cell proliferation and cell death. Pflugers Arch. 452, 249-259. https://doi.org/10.1007/s00424-006-0044-y
  18. Sato, T., Saito, T., Saegusa, N. and Nakaya, H. (2005) Mitochondrial $Ca^{2+}$-activated $K^+$ channels in cardiac myocytes: a mechanism of the cardioprotective effect and modulation by protein kinase A. Circulation 111, 198-203. https://doi.org/10.1161/01.CIR.0000151099.15706.B1
  19. Stout, A. K., Raphael, H. M., Kanterewicz, B. I., Klann, E. and Reynolds, I. J. (1998) Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat. Neurosci. 1, 366-373. https://doi.org/10.1038/1577
  20. Sullivan, P. G., Rabchevsky, A. G., Waldmeier, P. C. and Springer, J. E. (2005) Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J. Neurosci. Res. 79, 231-239. https://doi.org/10.1002/jnr.20292
  21. Trollinger, D. R., Cascio, W. E. and Lemasters, J. J. (1997) Selective loading of Rhod 2 into mitochondria shows mitochondrial $Ca^{2+}$ transients during the contractile cycle in adult rabbit cardiac myocytes. Biochem. Biophys. Res. Commun. 236, 738-742. https://doi.org/10.1006/bbrc.1997.7042
  22. Trudeau, L. E., Parpura, V. and Haydon, P. G. (1999) Activation of neurotransmitter release in hippocampal nerve terminals during recovery from intracellular acidifi cation. J. Neurophysiol. 81, 2627-2635.
  23. Wang, G. W., Klein, J. B. and Kang, Y. J. (2001) Metallothionein inhibits doxorubicin-induced mitochondrial cytochrome c release and caspase-3 activation in cardiomyocytes. J. Pharmacol. Exp. Ther. 298, 461-468.
  24. Wang, Y., Luo, J., Chen, X., Chen, H., Cramer, S. W. and Sun, D. (2008) Gene inactivation of $Na^+/H^+$ exchanger isoform 1 attenuates apoptosis and mitochondrial damage following transient focal cerebral ischemia. Eur. J. Neurosci. 28, 51-61. https://doi.org/10.1111/j.1460-9568.2008.06304.x
  25. White, R. J. and Reynolds, I. J. (1995) Mitochondria and $Na^+/Ca^{2+}$ exchange buffer glutamate-induced calcium loads in cultured cortical neurons. J. Neurosci. 15, 1318-1328.
  26. Zaidan, E. and Sims, N. R. (1994) The calcium content of mitochondria from brain subregions following short-term forebrain ischemia and recirculation in the rat. J. Neurochem. 63, 1812-1819.

Cited by

  1. Glutathione Depletion by L-Buthionine-S,R-Sulfoximine Induces Apoptosis of Cardiomyocytes through Activation of PKC-δ vol.21, pp.5, 2013, https://doi.org/10.4062/biomolther.2013.065
  2. The green algae Ulva fasciata Delile extract induces apoptotic cell death in human colon cancer cells vol.49, pp.1, 2013, https://doi.org/10.1007/s11626-012-9547-3
  3. Red Ginseng Extract Attenuates Kainate-Induced Excitotoxicity by Antioxidative Effects vol.2012, 2012, https://doi.org/10.1155/2012/479016
  4. Protein kinase C-β mediates neuronal activation of Na+/H+ exchanger-1 during glutamate excitotoxicity vol.26, pp.4, 2014, https://doi.org/10.1016/j.cellsig.2013.12.011