DOI QR코드

DOI QR Code

Future Cancer Therapy with Molecularly Targeted Therapeutics: Challenges and Strategies

  • Received : 2011.08.16
  • Accepted : 2011.09.27
  • Published : 2011.10.30

Abstract

A new strategy for cancer therapy has emerged during the past decade based on molecular targets that are less likely to be essential in all cells in the body, therefore confer a wider therapeutic window than traditional cytotoxic drugs which mechanism of action is to inhibit essential cellular functions. Exceptional heterogeneity and adaptability of cancer impose significant challenges in oncology drug discovery, and the concept of complex tumor biology has led the framework of developing many anticancer therapeutics. Protein kinases are the most pursued targets in oncology drug discovery. To date, 12 small molecule kinase inhibitors have been approved by US Food and Drug Administration, and many more are in clinical development. With demonstrated clinical efficacy of bortezomib, ubiquitin proteasome and ubiquitin-like protein conjugation systems are also emerging as new therapeutic targets in cancer therapy. In this review, strategies of targeted cancer therapies with inhibitors of kinases and proteasome systems are discussed. Combinational cancer therapy to overcome drug resistance and to achieve greater treatment benefit through the additive or synergistic effects of each individual agent is also discussed. Finally, the opportunities in the future cancer therapy with molecularly targeted anticancer therapeutics are addressed.

Keywords

References

  1. Adam, S. J., Palombella, V. J., Sausville, E. A., Johnson, J., Destree, A., Lazarus, D. D., Maas, J., Pien, C. S., Prakash, S. and Elliott, P. J. (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 59, 2615-2622.
  2. Adams, J. (2003) The proteasome: structure, function, and role in the cell. Cancer Treat. Rev. 29 (Suppl 1), 3-9.
  3. Arrowsmith, J. (2011) Phase III and submission failures: 2007-2010. Nature Rev. Drug Discov. 10, 1. https://doi.org/10.1038/nrd3347
  4. Baker, S. J. and Reddy, E. P. (2010) Targeted inhibition of kinases in cancer therapy. Mt. Sinai J. Med. 77, 573-586. https://doi.org/10.1002/msj.20220
  5. Bareschino, M. A., Schettino, C., Troiani, T., Martinelli, E., Morgillo, F. and Ciardiello, F. (2007) Erlotinib in cancer treatment. Annal. Oncol. 18 (Suppl 6), 35-41. https://doi.org/10.1093/annonc/mdm177
  6. Barker, A. J., Gibson, K. H., Grundy, W., Godfrey, A. A., Barlow, J. J., Healy, M. P., Woodburn, J. R., Ashton, S. E., Curry, B. J., Scarlett, L., Henthorn, L. and Richards, L. (2001) Studies leading to the identifi cation of ZD1839 (IRESSA): an orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorg. Med. Chem. Lett. 11, 1911-1914. https://doi.org/10.1016/S0960-894X(01)00344-4
  7. Becker, K., Marchenko, N. D., Palacios, G. and Moll, U. M. (2008) A role of HAUSP in tumor suppression in a human colon carcinoma xenograft model. Cell Cycle 7, 1205-1213. https://doi.org/10.4161/cc.7.9.5756
  8. Bedford, L., Lowe, J., Dick, L. R., Mayer, R. J. and Brownell, J. E. (2011) Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat. Rev. Drug Discov. 10, 29-46. https://doi.org/10.1038/nrd3321
  9. Bible, K. C., Suman, V. J., Molina, J. R., Smallridge, R. C., Maples, W. J., Menefee, M. E., Rubin, J., Sideras, K., Morris, J. C. 3rd., McIver, B., Burton, J. K., Webster, K. P., Bieber, C., Traynor, A. M., Flynn, P. J,. Goh, B. C., Tang, H., Ivy, S. P. and Erlichman, C. Endocrine Malignancies Disease Oriented Group. Mayo Clinic Cancer Center. Mayo Phase 2 Consortium. (2010) Efficacy of pazopanib in progressive, radioiodine-refractory, metastatic differentiated thyroid cancers: results of a phase 2 consortium study. Lancet Oncol. 11, 962-972. https://doi.org/10.1016/S1470-2045(10)70203-5
  10. Bjornsti, M. A. and Houghton, P. J. (2004) The TOR pathway: a target for cancer therapy. Nat. Rev. Cancer 4, 335-348. https://doi.org/10.1038/nrc1362
  11. Branford, S. and Hughes, T. (2006) Detection of BCR-ABL mutations and resistance to imatinib mesylate. Methods Mol. Med. 125, 93-106.
  12. Breccia, M. and Alimena, G. (2010) Nilotinib: a second-generation tyrosine kinase inhibitor for chronic myeloid leukemia. Leuk. Res. 34, 129-134. https://doi.org/10.1016/j.leukres.2009.08.031
  13. Brenner, H., Gondos, A. and Pulte, D. (2009) Expected long-term survival of patients diagnosed with multiple myeloma in 2006-2010. Haematologica 94, 270-275. https://doi.org/10.3324/haematol.13782
  14. Brognard, J. and Hunter, T. (2011) Protein kinase signaling networks in cancer. Curr. Opin. Gene Dev. 21, 4-11. https://doi.org/10.1016/j.gde.2010.10.012
  15. Bukowski, R. M. (2010) Pazopanib: a multikinase inhibitor with activity in advanced renal cell carcinoma. Expert Rev. Anticancer Ther. 10, 635-645. https://doi.org/10.1586/era.10.38
  16. Cameron, D. A. and Stein, S. (2008) Drug Insight: intracellular inhibitors of HER2-clinical development of lapatinib in breast cancer. Nat. Clin. Pract. Oncol. 5, 512-520. https://doi.org/10.1038/ncponc1156
  17. Cameron, D., Casey, M., Press M., Lindquist, D., Pienkowski, T., Romieu, C. G., Chan, S., Jagiello-Gruszfeld, A., Kaufman, B., Crown, J., Chan, A., Campone, M., Viens, P., Davidson, N., Gorbounova, V., Raats, J. I., Skarlos, D., Newstat, B., Roychowdhury, D., Paoletti, P., Oliva, C., Rubin, S., Stein, S. and Geyer, C. E. A. (2008) A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated effi cacy and biomarker analyses. Breast Cancer Res. Treat. 112, 5335-5343.
  18. Carew, J. S., Giles, F. J. and Nawrocki, S. T. (2008) Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett. 269, 7-17. https://doi.org/10.1016/j.canlet.2008.03.037
  19. Carter, C. A., Kelly, R. J. and Giaccone, G. (2009) Small-molecule inhibitors of the human epidermal receptor family. Expert Opin. Investig. Drugs 18, 1829-1842. https://doi.org/10.1517/13543780903373343
  20. Casalini, P., Iorio, M. V., Galmozzi, E. and Menard, S. (2004) Role of HER receptors family in development and differentiation. J. Cell. Physiol. 200, 343-350. https://doi.org/10.1002/jcp.20007
  21. Castaneda, C. A. and Gomez, H. L. (2009) Pazopanib: an antiangiogenic drug in perspective. Fut. Oncol. 5, 1335-1348. https://doi.org/10.2217/fon.09.112
  22. Chauhan, D., Catley, L., Li, G., Podar, K., Hideshima, T., Velankar, M., Mitsiades, C., Mitsiades, N., Yasui, H., Letai, A., Ovaa, H., Berkers, C., Nicholson, B., Chao, T. H., Neuteboom, S. T., Richardson, P., Palladino, M. A. and Anderson, K. C. (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8, 407-419. https://doi.org/10.1016/j.ccr.2005.10.013
  23. Chauhan, D., Hideshima, T. and Anderson, K. C. (2006) A novel proteasome inhibitor NPI-0052 as an anticancer therapy. Br. J. Cancer 95, 961-965. https://doi.org/10.1038/sj.bjc.6603406
  24. Chauhan, D., Singh, A. V., Ciccarelli, B., Richardson, P. G., Palladino, M. A. and Anderson, K. C. (2010) Combination of novel proteasome inhibitor NPI-0052 and lenalidomide trigger in vitro and in vivo synergistic cytotoxicity in multiple myeloma. Blood 115, 834-845. https://doi.org/10.1182/blood-2009-03-213009
  25. Chiba, T. and Tanaka, K. (2004) Cullin-based ubiquitin ligase and its control by NEDD8-conjugating system. Curr. Protein Pept. Sci. 5, 177-184. https://doi.org/10.2174/1389203043379783
  26. Chiu, B. C. and Weisenburger, D. D. (2003) An update of the epidemiology of non-Hodgkin's lymphoma. Clin. Lymphoma 4, 161-168. https://doi.org/10.3816/CLM.2003.n.025
  27. Chow, L. Q. and Eckhardt, S. G. (2007) Sunitinib: from rational design to clinical effi cacy. J. Clin. Oncol. 25, 884-896. https://doi.org/10.1200/JCO.2006.06.3602
  28. Cohen, P. (2002) Protein kinases-the major drug targets of the twenty-first centry? Nature Rev. Drug Discov. 1, 309-315. https://doi.org/10.1038/nrd773
  29. Cohen, M. H., Williams, G. A., Sridhara, R., Chen, G., McGuinn, W. D. Jr., Morse, D., Abraham, S., Rahman, A., Liang, C., Lostritto, R., Baird, A. and Pazdur, R. (2004) United States Food and Drug Administration Drug Approval summary: Gefi tinib (ZD1839; Iressa) tablets. Clin. Cancer Res. 10, 1212-1218. https://doi.org/10.1158/1078-0432.CCR-03-0564
  30. Cohen, M. H., Johnson, J. R, Chattopadhyay, S., Tang, S., Justice, R., Sridhara, R. and Pazdur, R. (2010) Approval summary: erlotinib maintenance therapy of advanced/metastatic non-small cell lung cancer (NSCLC). Oncologist 15, 1344-1351. https://doi.org/10.1634/theoncologist.2010-0257
  31. Colland, F. (2010) The therapeutic potential of deubiquitinating enzyme inhibitors. Biochem. Soc. Trans. 38, 137-143. https://doi.org/10.1042/BST0380137
  32. Colland, F., Formstecher, E., Jacq, X., Reverdy, C., Planquette, C., Conrath, S., Trouplin, V., Bianchi, J., Aushev, V. N., Camonis, J., Calabrese, A., Borg-Capra, C., Sippl, W., Collura, V., Boissy, G., Rain, J. C., Guedat, P., Delansorne, R. and Daviet, L. (2009) Smallmolecule inhibitor of USP7/HAUSP ubiquitin protease stabilizes and activates p53 in cells. Mol. Cancer Ther. 8, 2286-2295. https://doi.org/10.1158/1535-7163.MCT-09-0097
  33. Corey, E. J. and Li, W. D. (1999) Total synthesis and biological activity of lactacystin, omuralide and analogs. Chem. Pharm. Bull. (Tokyo), 47, 1-10. https://doi.org/10.1248/cpb.47.1
  34. Cortes-Funes, H., Gomez, C., Rosell, R., Valero, P., Garcia-Giron, C., Velasco, A., Izquierdo, A., Diz, P., Camps, C., Castellanos, D., Alberola, V., Cardenal, F., Gonzalez-Larriba, J. L., Vieitez, J. M., Maeztu, I,. Sanchez, J. J., Queralt, C., Mayo, C., Mendez, P., Moran, T. and Taron, M. (2005) Epidermal growth factor receptor activating mutations in Spanish gefi tinib-treated non-small-cell lung cancer patients. Ann. Oncol. 16, 1081-1086. https://doi.org/10.1093/annonc/mdi221
  35. Dancey, J. E. and Chen, H. X. (2006) Strategies for optimizing combinations of molecularly targeted anticancer agents. Nature Rev. Drug Discov. 5, 649-659. https://doi.org/10.1038/nrd2089
  36. Daviet, L. and Colland, F. (2008) Targeting ubiquitin specifi c proteases for drug discovery. Biochimie 90, 270-283. https://doi.org/10.1016/j.biochi.2007.09.013
  37. de Bettignies, G. and Coux, O. (2010) Proteasome inhibitors: dozens of molecules and still counting. Biochimie 92, 1530-1545. https://doi.org/10.1016/j.biochi.2010.06.023
  38. Deininger, M. (2005) Resistance to imatinib: mechanisms and management. J. Natl. Compr. Cancer Netw. 3, 757-768.
  39. Deininger, M. W., Goldman, J. M. and Melo, J. V. (2000) The molecular biology of chronic myeloid leukemia. Blood 96, 3343-3356.
  40. Demetri, G. D., van Oosterom, A. T., Garrett, C. R., Blackstein, M. E., Shah, M. H., Verweij, J., McArthur, G., Judson, I. R., Heinrich, M. C., Morgan, J. A., Desai, J., Fletcher, C. D., George, S., Bello, C. L, Huang, X., Baum, C. M. and Casali, P. G. (2006) Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368, 1329-1338. https://doi.org/10.1016/S0140-6736(06)69446-4
  41. Demo, S. D., Kirk, C. J., Aujay, M. A., Buchholz, T. J., Dajee, M., Ho, M. N., Jiang, J., Laidig, G. J., Lewis, E. R., Parlati, F., Shenk, K. D., Smyth, M. S., Sun, C. M., Vallone, M. K., Woo, T. M., Molineaux, C. J. and Bennett, M. K. (2007) Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res. 67, 6383-6391. https://doi.org/10.1158/0008-5472.CAN-06-4086
  42. Demo, S. D., Kirk, C. J., Aujay, M. A., Buchholz, T. J., Dajee, M., Ho, M. N., Jiang, J., Laidig, G. J., Lewis, E. R., Parlati, F.,Shenk, K. D., Smyth, M. S., Sun, C. M., Vallone, M. K., Woo, T. M., Molineaux, C. J. and Bennett, M .K. (2007) Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res. 67, 6383-6391. https://doi.org/10.1158/0008-5472.CAN-06-4086
  43. Dhillon, S. and Wagstaff, A. J. (2007) Lapatinib. Drugs 67, 2101-2108. https://doi.org/10.2165/00003495-200767140-00008
  44. Dick, L. R. and Fleming, P. E. (2010) Building on bortezomib: secondgeneration proteasome inhibitors as anti-cancer therapy. Drug Discov. Today 15, 243-249. https://doi.org/10.1016/j.drudis.2010.01.008
  45. Duffy, M. J., O'Donovan, N. and Crown, J. (2011) Use of molecular markers for predicting therapy response in cancer patients. Cancer Treat. Rev. 37, 151-159. https://doi.org/10.1016/j.ctrv.2010.07.004
  46. Eberhard, D. A., Johnson, B. E., Amler, L. C., Goddard, A. D., Heldens, S. L., Herbst, R. S., Ince, W. L., Janne, P. A., Januario, T., Johnson, D. H., Klein, P., Miller, V. A., Ostland, M. A., Ramies, D. A., Sebisanovic, D., Stinson, J. A., Zhang, Y. R., Seshagiri, S. and Hillan, K. J. (2005) Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J. Clin. Oncol. 23, 5900-5909. https://doi.org/10.1200/JCO.2005.02.857
  47. Engelman, J. A. and Settleman, J. (2008) Acquired resistance to tyrosine kinase inhibitors during cancer therapy. Curr. Opin. Genet. Dev. 18, 73-79. https://doi.org/10.1016/j.gde.2008.01.004
  48. Escudier, B., Eisen, T., Stadler, W. M., Szczylik, C., Oudard, S., Siebels, M., Negrier, S., Chevreau, C., Solska, E., Desai, A. A., Rolland, F., Demkow, T., Hutson, T. E., Gore, M., Freeman, S., Schwartz, B., Shan, M., Simantov, R., Bukowski, R. M. and TARGET Study Group (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125-134. https://doi.org/10.1056/NEJMoa060655
  49. Fenical, W., Jensen, P. R., Palladino, M. A., Lam, K. S., Lloyd, G. K. and Potts, B. C. (2009) Discovery and development of the anticancer agent salinosporamide A (NPI-0052). Bioorg. Med. Chem. 17, 2175-2180. https://doi.org/10.1016/j.bmc.2008.10.075
  50. Force, T. and Kolaja, K. (2011) Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes. Nature Rev. Drug Discov. 10, 111-126. https://doi.org/10.1038/nrd3252
  51. Gambacorti-Passerini, C. B., Gunby, R. H., Piazza, R., Galietta, A., Rostagno, R. and Scapozza, L. (2003) Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet Oncol. 4, 75-85. https://doi.org/10.1016/S1470-2045(03)00979-3
  52. Giamas, G., Man, Y. L., Hirner, H., Bischof, J., Kramer, K., Khan, K., Ahmed, S. S. L., Stebbing, J. and Knippschild, U. (2010) Kinases as targets in the treatment of solid tumors. Cell Signal 22, 984-1002. https://doi.org/10.1016/j.cellsig.2010.01.011
  53. Giamas, G., Stebbing, J., Vorgias, C. E. and Knippschild, U. (2007) Protein kinases as targets for cancer treatment. Pharmacogenomics 8, 1005-1016. https://doi.org/10.2217/14622416.8.8.1005
  54. Giampaglia, M., Chiuri, V. E., Tinelli, A., De Laurentiis, M., Silvestris, N. and Lorusso, V. (2010) Lapatinib in breast cancer: clinical experiences and future perspectives. Cancer Treat Rev. 36 (Suppl 3), S72-S79. https://doi.org/10.1016/S0305-7372(10)70024-4
  55. Goldberg, A. L. (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895-899. https://doi.org/10.1038/nature02263
  56. Goldberg, A. L. (2007) Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem. Soc. Trans. 35, 12-17. https://doi.org/10.1042/BST0350012
  57. Golemovic, M., Verstovsek, S., Giles, F., Cortes, J., Manshouri, T., Manley, P. W., Mestan, J., Dugan, M., Alland, L., Griffi n, J. D., Arlinghaus, R. B., Sun, T., Kantarjian, H. and Beran, M. (2005) AMN107, a novel aminopyrimidine inhibitor of Bcr-Abl, has in vitro activity against imatinib-resistant chronic myeloid leukemia. Clin. Cancer Res. 11, 4941-4947. https://doi.org/10.1158/1078-0432.CCR-04-2601
  58. Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., Hunter, C., Bignell, G., Davies, H., Teague, J., Butler, A., Stevens, C., Edkins, S., O'Meara, S., Vastrik, I., Schmidt, E. E., Avis, T., Barthorpe, S., Bhamra, G., Buck, G., Choudhury, B., Clements, J., Cole, J., Dicks, E., Forbes, S., Gray, K., Halliday, K., Harrison, R., Hills, K., Hinton, J., Jenkinson, A., Jones, D., Menzies, A., Mironenko, T., Perry, J., Raine, K., Richardson, D., Shepherd, R., Small, A., Tofts, C., Varian, J., Webb, T., West, S., Widaa, S., Yates, A., Cahill, D. P., Louis, D. N., Goldstraw, P., Nicholson, A. G., Brasseur F., Looijenga, L., Weber, B. L., Chiew, Y.-E., deFazio, A., Greaves, M. F., Green, A. R., Campbell, P., Birney, E., Easton, D. F., Chenevix-Trench, G., Tan, M.-H., Khoo, S. K., Teh, B. T., Yuen, S. T., Leung, S. Y., Wooster, R., Futreal, P. A. and Stratton, M. R. (2007) Patterns of somatic mutation in human cancer genomes. Nature 446, 153-158. https://doi.org/10.1038/nature05610
  59. Gupta, N., Liu, G., Berg. D., Kalebic, T. and Gomes-Navarro, J. (2010) Clinical pharmacokinetics of intravenous and oral MLN9708, an investigational proteasome inhibitor: an analysis of data from four Phase I monotherapy studies. [abstract]. ASH Annu. Meet. Abstract 1813.
  60. Hamberg, P., Verweij, J. and Sleijfer, S. (2010) (Pre-)clinical pharmacology and activity of pazopanib, a novel multikinase angiogenesis inhibitor. Oncologist 15, 539-547. https://doi.org/10.1634/theoncologist.2009-0274
  61. Hanahan, D. and Weinberg, R. A. (2000) The hallmarks of cancer. Cell 100, 57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
  62. Hanahan, D. and Weinberg, R. A. (2011) The hallmarks of cancer: the next generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
  63. Harris, T. J. R. and Mccormick, F. (2010) The molecular pathology of cancer. Nature Rev. Clin. Oncol. 7, 251-265. https://doi.org/10.1038/nrclinonc.2010.41
  64. Hartmann, J. T., Haap, M., Kopp, H. G. and Lipp, H. P. (2009) Tyrosine kinase inhibitorsa review on pharmacology, metabolism and side effects. Curr. Drug Metab. 10, 470-481. https://doi.org/10.2174/138920009788897975
  65. Hay, N. and Sonenberg, N. (2004) Upstream and downstream of mTOR. Genes Dev. 18, 1926-1945. https://doi.org/10.1101/gad.1212704
  66. Hershko, A. (2005) The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ. 12, 1191-1197. https://doi.org/10.1038/sj.cdd.4401702
  67. Hershko, A. and Ciechanover, A. (1998) The ubiquitin system. Annu. Rev. Biochem. 67, 425-479. https://doi.org/10.1146/annurev.biochem.67.1.425
  68. Hiddemann, W. and Dreyling, M. (2003) Mantle cell lymphoma: therapeutic strategies are different from CLL. Curr. Treat. Options Oncol. 4, 219-226. https://doi.org/10.1007/s11864-003-0023-x
  69. Hideshima, T, Richardson, P., Chauhan, D., Palombella, V. J., Elliott, P. J., Adams, J. and Anderson, K. C. (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res. 61, 3071-3076.
  70. Hochstrasser, M. (2009) Origin and function of ubiquitin-like proteins. Nature 458, 422-429. https://doi.org/10.1038/nature07958
  71. Holden, J. A., Willmore-Payne, C. and Layfi eld, L. J. (2008) Tyrosine kinase activating mutations in human malignancies: implications for diagnostic pathology. Exp. Mol. Pathol. 85, 68-75. https://doi.org/10.1016/j.yexmp.2008.03.010
  72. Hu, J., McCall, C. M., Ohta, T. and Xiong, Y. (2004) Targeted ubiquitination of CDT1 by the DDB1 CUL4A-ROC1 ligase in response to DNA damage. Nat. Cell Biol. 6, 1003-1009. https://doi.org/10.1038/ncb1172
  73. Hurwitz, H. I., Dowlati, A., Saini, S., Savage, S., Suttle, A. B., Gibson, D. M., Hodge, J. P., Merkle, E. M. and Pandite, L. (2009) Phase I trial of pazopanib in patients with advanced cancer. Clin. Cancer Res. 15, 4220-4227. https://doi.org/10.1158/1078-0432.CCR-08-2740
  74. International Myeloma Foundation (2008/2009) Multiple myeloma: concise review of the disease and treatment options [online] http://www.myeloma.org.
  75. Iyer, R. and Bharthuar, A. (2010) A review of erlotinib - an oral, selective epidermal growth factor receptor tyrosine kinase inhibitor. Expert Opin. Pharmacother. 11, 311-320. https://doi.org/10.1517/14656560903551283
  76. Iyer, R., Fetterly, G., Lugade, A. and Thanavala, Y. (2010) Sorafenib: a clinical and pharmacologic review. Expert Opin. Pharmacother. 11, 1943-1955. https://doi.org/10.1517/14656566.2010.496453
  77. Johnson, J. R., Cohen, M., Sridhara, R., Chen, Y. F., Williams, G. M., Duan, J., Gobburu, J., Booth, B., Benson, K., Leighton, J., Hsieh, L. S., Chidambaram, N., Zimmerman, P. and Pazdur, R. (2005) Approval summary for erlotinib for treatment of patients with locally advanced or metastatic non-small cell lung cancer after failure of at least one prior chemotherapy regimen. Clin. Cancer Res. 11, 6414-6421. https://doi.org/10.1158/1078-0432.CCR-05-0790
  78. Kalidas, M. Kantarjian, H. and Talpaz, M. (2001) Chronic myelogenous leukemia. J.A.M.A. 286, 895-898. https://doi.org/10.1001/jama.286.8.895
  79. Kamb, A. (2005) What's wrong with our cancer models? Nature Rev. Drug Discov. 4, 161-165. https://doi.org/10.1038/nrd1635
  80. Kamb, A., Wee, S. and Lengauer, C. (2007) Why cancer drug discovery is so diffi cult? Nature Rev. Drug Discov. 6, 115-120. https://doi.org/10.1038/nrd2155
  81. Kane, R. C., Bross, P. F., Farrell, A. T. and Pazdur, R. (2003) Velcade: US FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist 8, 508-513. https://doi.org/10.1634/theoncologist.8-6-508
  82. Kane, R. C., Dagher, R., Farrell, A., Ko, C. W., Sridhara, R., Justice, R. and Pazdur, R. (2007) Bortezomib for the treatment of mantle cell lymphoma. Clin. Cancer Res. 13, 5291-5294. https://doi.org/10.1158/1078-0432.CCR-07-0871
  83. Kane, R. C., Farrell, A. T., Sridhara, R. and Pazdur R. (2006) United States Food and Drug Administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clin. Cancer Res. 12, 2955-2960. https://doi.org/10.1158/1078-0432.CCR-06-0170
  84. Kantarjian, H. M., Giles, F., Gattermann, N., Bhalla, K., Alimena, G., Palandri, F., Ossenkoppele, G. J., Nicolini, F.-E., O'Brien, S. G., Litzow, M.,Bhatia, R, Cervantes, F., Haque, A., Shou, Y., Resta, D. J., Weitzman, A., Hochhaus, A. and le Coutre, P. (2007) Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood 110, 3540-3546. https://doi.org/10.1182/blood-2007-03-080689
  85. Keam, S. J. (2008) Dasatinib - In chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. Biodrugs 22, 59-69. https://doi.org/10.2165/00063030-200822010-00007
  86. Knight, G. W. and McLellan, D. (2004) Use and limitations of imatinib mesylate (Glivec), a selective inhibitor of the tyrosine kinase Abl transcript in the treatment of chronic myeloid leukaemia. Br. J. Biomed. Sci. 61, 103-111.
  87. Kobayashi, A., Kang, M. I., Okawa, H,. Ohtsuji, M., Zenke, Y., Chiba, T., Igarashi, K. and Yamamoto, M. (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate for proteasomal degradation of Nrf2. Mol. Cell Biol. 24, 7130-7139. https://doi.org/10.1128/MCB.24.16.7130-7139.2004
  88. Kola, I. and Landis, J. (2004) Can the pharmaceutical industry reduce attrition rates? Nature Rev. Drug Discov. 3, 711-715. https://doi.org/10.1038/nrd1470
  89. Kuhn, D. J., Chen, Q., Voorhees, P. M., Strader, J. S., Shenk, K. D., Sun, C. M., Demo, S. D., Bennett, M. K., van Leeuwen, F. W., Chanan-Khan, A. A. and Orlowski, R. Z. (2007) Potent activity of carfi lzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 110, 3281-3290. https://doi.org/10.1182/blood-2007-01-065888
  90. Kulasingam, V. and Diamandis, E. P. (2008) Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat. Clin. Pract. Oncol. 5, 588-599. https://doi.org/10.1038/ncponc1187
  91. Kummar, S., Chen, H. X., Wright, J., Holbeck, S., Millin, M. D., Tomaszewski, J., Zweibel, J., Collins, J. and Doroshow, J. H. (2010) Utilizing targeted cancer therapeutic agents in combination: novel approaches and urgent requirements. Nat. Rev. Drug Discov. 9, 843-856. https://doi.org/10.1038/nrd3216
  92. Kupperman, E., Lee, E. C., Cao, Y., Bannerman, B., Fitzgerald, M., Berger, A., Yu, J., Yang, Y., Hales, P., Bruzzese, F., Liu, J., Blank, J., Garcia, K.,. Tsu, C., Dick, L., Fleming, P., Yu, L., Manfredi, M., Rolfe, M. and Bolen, J. (2010) Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res. 70, 1970-1980. https://doi.org/10.1158/0008-5472.CAN-09-2766
  93. Kyle, R. A. and Rajkumar, S. V. (2004) Multiple myeloma. N. Engl. J. Med. 35, 1860-1873.
  94. le Coutre, P., Ottmann, O. G., Giles, F., Kim, D. W., Cortes, J., Gattermann, N., Apperley, J. F., Larson, R. A., Abruzzese, E., O'Brien, S. G., Kuliczkowski, K., Hochhaus, A., Mahon, F. X., Saglio, G., Gobbi, M., Kwong, Y. L. Baccarani, M., Hughes, T., Martinelli, G., Radich, J. P., Zheng, M., Shou, Y. and Kantarjian, H. (2008) Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is active in patients with imatinib-resistant or -intolerant accelerated-phase chronic myelogenous leukemia. Blood 111, 1834-1839. https://doi.org/10.1182/blood-2007-04-083196
  95. Lengyel, E., Sawada, K. and Salgia, R. (2007) Tyrosine kinase mutations in human cancer. Curr. Mol. Med. 7, 77-84. https://doi.org/10.2174/156652407779940486
  96. Lenz, G., Dreyling, M., Hoster, E., Wormann, B., Duhrsen, U., Metzner, B., Eimermacher, H., Neubauer, A., Wandt, H., Steinhauer, H., Martin, S., Heidemann, E., Aldaoud, A., Parwaresch, R., Hasford, J., Unterhalt, M. and Hiddemann, W. (2005) Immunochemotherapy with rituximab and cyclophosphamide, doxorubicin, vincristine, and prednisone signifi cantly improves response and time to treatment failure, but not long-term outcome in patients with previously untreated mantle cell lymphoma: results of a prospective randomized trial of the German Low Grade Lymphoma Study Group (GLSG). J. Clin. Oncol. 23, 1984-1992. https://doi.org/10.1200/JCO.2005.08.133
  97. Lenz, G., Dreyling, M., Unterhalt, M. and Hiddemann, W. (2004) Current strategies in the treatment of advanced stage mantle cell lymphoma. Dtsch. Med. Wochenschr. 129, 2429-2433. https://doi.org/10.1055/s-2004-835284
  98. Leonard, J. P., Furman, R. R. and Coleman, M. (2006) Proteasome inhibition with bortezomib: a new therapeutic strategy for non-Hodgkin's lymphoma. Int. J. Cancer 119, 971-979. https://doi.org/10.1002/ijc.21805
  99. Lin, J. J., Milhollen, M. A., Smith, P. G., Narayanan, U. and Dutta, A. (2010) NEDD8-targeting drug MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering checkpoint activation, apoptosis, and senescence in cancer cells. Cancer Res. 70, 10310-10320. https://doi.org/10.1158/0008-5472.CAN-10-2062
  100. Lombardo, L. J., Lee, F.Y., Chen, P., Norris, D., Barrish, J. C., Behnia, K., Castaneda, S., Cornelius, L. A. M., Das, J., Doweyko, A. M., Fairchild, C., Hunt , J. T., Inigo, I., Johnston, K., Kamath, A., Kan, D., Klei, H., Marathe, P., Pang, S. H., Peterson, R., Pitt, S., Schieven, G. L., Schmidt, R. J., Tokarski, J., Wen, M. L., Wityak, J. and Borzilleri, R. M. (2004) Discovery of N-(2-chloro-6-methylphenyl)-2-(6- (4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino) thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J. Med. Chem. 47, 6658-6661. https://doi.org/10.1021/jm049486a
  101. Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., Harris, P. L., Haserlat, S. M., Supko, J. G., Haluska, F. G., Louis, D. N., Christiani, D. C., Settleman, J. and Haber, D. A. (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefi tinib. N. Engl. J. Med. 350, 2129-2139. https://doi.org/10.1056/NEJMoa040938
  102. Ma, M. H., Yang, H. H., Parker, K., Manyak, S., Friedman, J. M., Altamirano, C., Wu, Z. Q., Borad, M. J., Frantzen, M., Roussos, E., Neeser, J., Mikail, A., Adams, J., Sjak-Shie, N., Vescio, R. A. and Berenson, J . R. (2003) The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents. Clin. Cancer Res. 9, 1136-1144.
  103. McDermott, U. and Settleman, J. (2009) Personalized cancer therapy with selective kinase inhibitors: an emerging paradigm in medical oncology. J. Clin. Oncol. 27, 5650-5659. https://doi.org/10.1200/JCO.2009.22.9054
  104. Manley, P., Sun, T., Arlinghaus, R. B., Alland, L., Dugan, M., Cortes, J., Giles, F. and Beran, M. (2005) AMN107, a novel aminopyrimidine inhibitor of p190 Bcr-Abl activation and of in vitro proliferation of Philadelphia-positive acute lymphoblastic leukemia cells. Cancer 104, 1230-1236. https://doi.org/10.1002/cncr.21299
  105. Mann, B. S., Johnson, J. R., He, K., Sridhara, R., Abraham, S., Booth, B. P., Verbois, L., Morse, D. E., Jee, J. M., Pope, S., Harapanhalli, R. S,. Dagher, R., Farrell, A., Justice, R. and Pazdur R. (2007) Vorinostat for treatment of cutaneous manifestations of advanced primary cutaneous T-cell lymphoma. Clin. Cancer Res. 13, 2318-2322. https://doi.org/10.1158/1078-0432.CCR-06-2672
  106. Marblestone, J. G. (2009) Ubiquitin drug discovery & diagnostics 2009 - fi rst annual conference. Idrugs 12, 750-753.
  107. Marchetti, A., Martella, C., Felicioni, L., Barassi, F., Salvator, S., Chella, A., Camplese, P. P., Iarussi, T., Mucilli, F., Mezzetti, A., Cuccurullo, F., Sacco, R. and Buttitta, F. (2005) EGFR mutations in non-small-cell lung cancer: Analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. J. Clin. Oncol. 23 857-865. https://doi.org/10.1200/JCO.2005.08.043
  108. Matthews, D. J. and Gerritsen, M. E. (2010) Tyrosine kinase inhibitors, Targeting protein kinases for cancer therapy. John Wiley & Sons, Inc., New Jersey, USA.
  109. McConkey, D. (2010) Proteasome and HDAC: who's zooming who? Blood 116, 308-309. https://doi.org/10.1182/blood-2010-04-278507
  110. McConkey, D. J. and Zhu, K. (2008) Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist. Updat. 11, 164-179. https://doi.org/10.1016/j.drup.2008.08.002
  111. McKeage, K. and Wagstaff, A. J. (2007) Sorafenib: in advanced renal cancer. Drugs 67, 475-483. https://doi.org/10.2165/00003495-200767030-00009
  112. Mendel, D. B., Laird, A. D., Xin, X., Louie, S. G., Christensen, J. G., Li, G., Schreck, R. E., Abrams, T. J., Ngai, T. J., Lee, L.B., Murray, L. J., Carver, J., Chan, E., Moss, K. G., Haznedar, J. O., Sukbuntherng, J., Blake, R. A., Sun, L., Tang, C., Miller, T., Shirazian, S., McMahon, G. and Cherrington, J. M. (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res. 9, 327-337.
  113. Millennium Pharmaceuticals Inc. (2010) $VELCADE{\circledR}$ (bortezomib) lable information. [online] http://www.accessdata.fda.gov/drugsatfda_ docs/label/2010/021602s023lbl.pdf
  114. Mitsiades, C. S., Hideshima, T., Chauhan, D., McMillin, D. W., Klippel, S., Laubach, J. P., Munshi, N. C., Anderson, K. C. and Richardson, P. G. (2009) Emerging treatments for multiple myeloma: beyond immunomodulatory drugs and bortezomib. Semin. Hematol. 46,166-175. https://doi.org/10.1053/j.seminhematol.2009.02.003
  115. Mitsiades, C. S., Mitsiades, N. S., McMullan, C. J., Poulaki, V., Shringarpure, R., Hideshima, T., Akiyama, M., Chauhan, D., Munshi, N., Gu, X., Bailey, C., Joseph, M., Libermann, T. A., Richon, V. M., Marks, P. A. and Anderson, K. C. (2004) Transcriptionalsignature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc. Natl. Acad. Sci. U S A. 101, 540-545. https://doi.org/10.1073/pnas.2536759100
  116. Mitsiades, N., Mitsiades, C. S., Richardson, P. G., Poulaki, V., Tai, Y. T., Chauhan, D., Fanourakis, G., Gu, X., Bailey, C., Joseph, M., Libermann, T. A., Schlossman, R., Munshi, N. C., Hideshima, T. and Anderson K. C. (2003) The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood 101, 2377-2380. https://doi.org/10.1182/blood-2002-06-1768
  117. Mok, T. S., Zhou, Q., Leung, L. and Loong, H. H. (2010) Personalized medicine for non-small-cell lung cancer. Expert Rev. Anticancer Ther. 10, 1601-1611. https://doi.org/10.1586/era.10.76
  118. Morabito, F., Gentile, M., Mazzone, C., Bringhen, S., Vigna, E., Lucia, E., Recchia, A. G., Raimondo, F, D., Musto, P. and Palumbo, A. (2010) Therapeutic approaches for newly diagnosed multiple myeloma patients in the era of novel drugs. Eur. J. Haematol. 85, 181-191. https://doi.org/10.1111/j.1600-0609.2010.01472.x
  119. Moscatello, D. K., Holgado-Madruga, M., Godwin, A. K., Ramirez, G., Gunn, G., Zoltick, P.W., Biegel, J. A., Hayes, R. L. and Wong, A. J. (1995) Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res. 55, 5536-5539.
  120. Motzer, R. J., Hutson, T. E., Tomczak, P., Michaelson, M. D., Bukowski, R. M., Rixe, O., Oudard, S., Negrier, S., Szczylik, C., Kim, S. T., Chen, I., Bycott, P. W., Baum, C. M. and Figlin, R. A. (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115-124. https://doi.org/10.1056/NEJMoa065044
  121. Motzer, R. J., Hutson, T. E., Tomczak, P., Michaelson, M. D., Bukowski, R. M., Oudard, S., Negrier, S., Szczylik C., Pili, R., Bjarnason, G. A., Garcia-del-Muro, X., Sosman, J, A., Solska, E., Wilding, G., Thompson, J. A., Kim, S. T., Chen, I., Huang, X. and Figlin, R. A. (2009) Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 27, 3584-3590. https://doi.org/10.1200/JCO.2008.20.1293
  122. Moyer, J, D., Barbacci, E. G., Iwata, K. K., Arnold, L., Boman, B., Cunningham, A., DiOrio, C., Doty, J., Morin, M. J., Moyer, M. P., Neveu, M., Pollack, V. A., Pustilnik, L. R., Reynolds, M. M., Sloan, D., Theleman, A. and Miller, P. (1997) Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res. 57, 4838-4848.
  123. Nalepa, G., Rolfe, M. and Harper, J. W. (2006) Drug discovery in the ubiquitin-proteasome system. Nat. Rev. Drug Discov. 5, 596-613. https://doi.org/10.1038/nrd2056
  124. Nicholson, B. and Kumar, K. G. S. (2011) The multifaceted roles of USP7: new therapeutic opportunities. Cell Biochem. Biophys. Published online: 06 April 2011.
  125. Nishitani, H., Sugimoto, N., Roukos, V., Nakanishi, Y., Saijo, M., Obuse, C., Tsurimoto, T., Nakayama, K. I., Nakayama, K., Fujita, M., Lygerou, Z. and Nishimoto T. (2006) Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. Embo J. 25, 1126-1136. https://doi.org/10.1038/sj.emboj.7601002
  126. Normanno, N., De Luca, A., Bianco, C., Strizzi, L., Mancino, M., Maiello, M. R., Carotenuto, A., De Feo, G., Caponigro, F. and Salomon, D. S. (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366, 2-16. https://doi.org/10.1016/j.gene.2005.10.018
  127. O'Connor, O. A., Stewart, A. K., Vallone, M., Molineaux, C. J., Kunkel, L. A., Gerecitano, J. F. and Orlowski, R. Z. (2009) A phase 1 dose escalation study of the safety and pharmacokinetics of the novel proteasome inhibitor carfi lzomib (PR-171) in patients with hematologic malignancies. Clin. Cancer Res. 15, 7085-7091. https://doi.org/10.1158/1078-0432.CCR-09-0822
  128. O'Farrell, A. M., Abrams, T. J., Yuen, H. A., Ngai, T. J., Louie, S. G., Yee, K. W., Wong, L. M., Hong, W., Lee, L. B., Town, A., Smolich, B. D., Manning, W. C., Murray, L. J., Heinrich, M. C. and Cherrington, J. M. (2003) SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 101, 3597-3605. https://doi.org/10.1182/blood-2002-07-2307
  129. O'Hare, T., Walters, D. K., Stoffregen, E. P., Jia, T., Manley, P. W., Mestan, J., Cowan-Jacob, S. W., Lee, F. Y., Heinrich, M. C., Deininger, M. W. N. and Druker, B. J. (2005) In vitro activity of Bcr Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinibresistant Abl kinase domain mutants. Cancer Res. 65, 4500-4505. https://doi.org/10.1158/0008-5472.CAN-05-0259
  130. Orlowski, R. Z. and Kuhn, D. J. (2008) Proteasome inhibitors in cancer therapy: lessons from the fi rst decade. Clin. Cancer Res. 14, 1649-1657. https://doi.org/10.1158/1078-0432.CCR-07-2218
  131. Oudard, S., Beuselinck, B., Decoene, J. and Albers, P. (2011) Sunitinib for the treatment of metastatic renal cell carcinoma. Cancer Treat. Rev. 37, 178-184. https://doi.org/10.1016/j.ctrv.2010.08.005
  132. Paez, J. G., Janne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., Herman, P., Kaye, F. J., Lindeman, N., Boggon, T. J., Naoki, K., Sasaki, H., Fujii, Y., Eck, M. J., Sellers, W. R., Johnson, B. E. and Meyerson, M. (2004) EGFR mutations in lung cancer: Correlation with clinical response to gefi tinib therapy. Science 304, 1497-1500. https://doi.org/10.1126/science.1099314
  133. Pal, S. K. and Figlin, R. A. (2010) Targeted therapies: Pazopanib: carving a niche in a crowded therapeutic landscape. Nat. Rev. Clin. Oncol. 7, 362-363. https://doi.org/10.1038/nrclinonc.2010.83
  134. Pan, Z. Q., Kentsis, A., Dias, D. C., Yamoah, K. and Wu, K. (2004) Nedd8 on cullin: building an expressway to protein destruction. Oncogene 23, 1985-1997. https://doi.org/10.1038/sj.onc.1207414
  135. Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I., Singh, B., Heelan, R., Rusch, V., Fulton, L., Mardis, E., Kupfer, D., Wilson, R., Kris, M. and Varmus, H. (2004) EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefi tinib and erlotinib Proc. Natl. Acad. Sci. U. S. A. 101, 13306-13311. https://doi.org/10.1073/pnas.0405220101
  136. Pei, X. Y., Dai, Y. and Grant, S. (2004) Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cellsby the proteasome inhibitor bortezomib and histonedeacetylase inhibitors. Clin. Cancer Res. 10, 3839-3852. https://doi.org/10.1158/1078-0432.CCR-03-0561
  137. Pena, C., Lathia, C., Shan, M. H., Escudier, B. and Bukowski, R. M. (2010) Biomarkers predicting outcome in patients with advanced renal cell carcinoma: results from sorafenib Phase III treatment approaches in renal cancer global evaluation trial. Clin. Cancer Res. 16, 4853-4863. https://doi.org/10.1158/1078-0432.CCR-09-3343
  138. Petroski, M. D. and Deshaies, R. J. (2005) Function and regulation of Cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6, 9-20. https://doi.org/10.1038/nrm1547
  139. Piva, R., Ruggeri, B., Williams, M., Costa, G., Tamagno, I., Ferrero, D., Giai, V., Coscia, M., Peola, S., Massaia, M., Pezzoni, G., Allievi, C., Pescalli, N., Cassin, M., di Giovine, S., Nicoli, P., de Feudis, P., Strepponi, I., Roato, I., Ferracini, R., Bussolati, B., Camussi, G., Jones-Bolin, S., Hunter, K., Zhao, H., Neri, A., Palumbo, A., Berkers, C., Ovaa, H., Bernareggi, A. and Inghirami, G. (2008) CEP-18770: a novel, orally active proteasome inhibitor with a tumorselective pharmacologic profi le competitive with bortezomib. Blood 111, 2765-2775. https://doi.org/10.1182/blood-2007-07-100651
  140. Plosker, G. L. and Robinson, D. M. (2008) Nilotinib. Drugs 68, 449-459. https://doi.org/10.2165/00003495-200868040-00005
  141. Rasheed, W. K., Johnstone, R. W. and Prince, H. M. (2007) Histone deacetylase inhibitors in cancer therapy. Expert Opin. Investig. Drugs 16, 659-678. https://doi.org/10.1517/13543784.16.5.659
  142. Reichert, J. M. and Wenger, J. B. (2008) Development trends for new cancer therapeutics and vaccines. Drug Discov. Today 13, 30-37. https://doi.org/10.1016/j.drudis.2007.09.003
  143. Richardson, P. G., Sonneveld, P., Schuster, M. W., Stadtmauer, E. A., Facon, T., Harousseau, J. L., Ben-Yehuda, D., Lonial, S., Goldschmidt, H., Reece, D., Blade, J., Boccadoro, M., Cavenagh, J. D., Boral, A. L., Esseltine, D. L., Wen, P. Y., Amato, A. A., Anderson, K. C. and San Miguel, J. (2009) Reversibility of symptomatic peripheral neuropathy with bortezomib in the phase III APEX trial in relapsed multiple myeloma: impact of a dose-modifi cation guideline. Br. J. Haematol. 144, 895-903. https://doi.org/10.1111/j.1365-2141.2008.07573.x
  144. Roberts, P. J., Stinchcombe, T. E., Der, C. J. and Socinski, M. A. (2010) Personalized medicine in non-small-cell lung cancer: Is KRAS a useful marker in selecting patients for epidermal growth factor receptor- targeted therapy? J. Clin. Oncol. 28, 4769-4777. https://doi.org/10.1200/JCO.2009.27.4365
  145. Rusnak, D. W., Lackey, K., Affl eck, K., Wood, E. R., Alligood, K. J., Rhodes, N., Keith, B. R., Murray, D. M., Knight, W. B., Mullin, R. J. and Gilmer, T. M. (2001) The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol. Cancer Ther. 1, 85-94.
  146. Sanchez, E., Li, M. J., Steinberg, J. A., Wang, C., Shen, J., Bonavida, B., Li, Z. W., Chen, H. M. and Berenson, J. R. (2010) The proteasome inhibitor CEP-18770 enhances the anti-myeloma activity of bortezomib and melphalan. Br. J. Haematol. 148, 569-581. https://doi.org/10.1111/j.1365-2141.2009.08008.x
  147. Sanford, M. and Keating, G. M. (2010) Pazopanib: in advanced renal cell carcinoma. Biodrugs 24, 279-286. https://doi.org/10.2165/11205480-000000000-00000
  148. Sawyers, C. L. (2003) Will mTOR inhibitors make it as cancer drugs? Cancer Cell 4, 343-348. https://doi.org/10.1016/S1535-6108(03)00275-7
  149. Schenkein, D. (2002) Proteasome inhibitors in the treatment of B-cell malignancies. Clin. Lymphoma 3, 49-55. https://doi.org/10.3816/CLM.2002.n.011
  150. Schulman, B. A. and Harper, J. W. (2009) Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 10, 319-333. https://doi.org/10.1038/nrm2673
  151. Sequist, L. V., Joshi, V. A., Janne, P. A., Bell, D. W., Fidias, P., Lindeman, N. I., Louis, D. N., Lee, J. C., Mark, E. J., Longtine, J., Verlander, P., Kucherlapati, R., Meyerson, M., Haber, D. A., Johnson, B. E. and Lynch, T. J. (2006) Epidermal growth factor receptor mutation testing in the care of lung cancer patients. Clin. Cancer Res. 12 (14 Part 2 Suppl S), 4403S-4408S. https://doi.org/10.1158/1078-0432.CCR-06-0099
  152. Shah, J. J., Jakubowiak, A. J., O'Connor, O. A., Orlowski, R. Z., Patterson,, M., Harvey, D., Berger, A. J., McDonald, A., Mulligan, G., Petruzzelli, L., Pickard, M. D., Smith, P. G., Venkatakrishnan, K. and Lonial, S. (2009) Phase 1 dose-escalation study of MLN4924, a novel NAE inhibitor, in patients with multiple myeloma and non- Hodgkin lymphoma. [abstract]. ASH Annu. Meet. Abstract 1854.
  153. Shah, J. J., Harvey, R. D., O'Connor, O. A., Jakubowiak, A. J., Smith, M. R., Orlowski, R. Z., Mulligan, G. J., Smith, P. G., Pickard, M. D., Dezube, B. J. and Lonial, S. (2010) Phase 1 dose-escalation study of multiple dosing schedules of the investigational drug MLN4924, a nedd8-activating enzyme inhibitor, in patients with relapsed and/ or refractory multiple myeloma or lymphoma. [abstract]. ASH Annu. Meet. Abstract 2801.
  154. Shah, N. P. and Sawyers, C. L. (2003) Mechanisms of resistance to STI571 in Philadelphia chromosome-associated leukemias. Oncogene 22, 7389-7395. https://doi.org/10.1038/sj.onc.1206942
  155. Shah, N. P., Tran, C., Lee, F.Y., Chen, P., Norris, D. and Sawyers, C. L. (2004) Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305, 399-401. https://doi.org/10.1126/science.1099480
  156. Shepherd, F. A., Pereira, J. R., Ciuleanu, T., Tan, E. H., Hirsh, V., Thongprasert, S., Campos, D., Maoleekoonpiroj, S., Smylie, M., Martins, R., van Kooten, M., Dediu, M., Findlay, B., Tu, D. S., Johnston, D., Bezjak, A., Clark, G., Santabarbara, P. and Seymour, L. (2005) Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med. 353, 123-132. https://doi.org/10.1056/NEJMoa050753
  157. Sirotnak, F. M. (2003) Studies with ZD1839 in preclinical models. Semin. Oncol. 30 (1 Suppl 1), 12-20. https://doi.org/10.1053/sonc.2003.50028
  158. Sloan, B. and Scheinfeld, N. S. (2008) Pazopanib, a VEGF receptor tyrosine kinase inhibitor for cancer therapy. Curr. Opin. Investig. Drugs 9, 1324-1335.
  159. Song, M. S., Salmena, L., Carracedo, A., Egia, A., Lo-Coco, F., Teruya- Feldstein, J. and Pandolfi , P. P. (2008) The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature 455, 813-817. https://doi.org/10.1038/nature07290
  160. Soucy, T. A., Smith, P. G., Milhollen, M. A., Berger, A. J., Gavin, J. M., Adhikari, S., Brownell, J. E., Burke, K. E., Cardin, D. P., Critchley, S., Cullis, C. A., Doucette, A., Garnsey, J. J., Gaulin, J. L., Gershman, R. E., Lublinsky, A. R., McDonald, A., Mizutani, H., Narayanan, U., Olhava, E. J., Peluso, S., Rezaei, M., Sintchak, M. D., Talreja, T., Thomas, M. P., Traore, T., Vyskocil, S., Weatherhead, G. S., Yu, J., Zhang, J., Dick, L. R., Claiborne, C. F., Rolfe, M., Bolen, J. B. and Langston, S. P. (2009) An inhibitor of NEDD8-activating enzyme as a new approach to treat cance. Nature 458, 732-736. https://doi.org/10.1038/nature07884
  161. Soucy, T. A., Dick, L. R., Smith, P. G., Milhollen, M. A. and Brownell, J. E. (2010) The NEDD8 conjugation pathway and its relevance in cancer biology and therapy. Genes Cancer 1, 708-716. https://doi.org/10.1177/1947601910382898
  162. Sternberg, C. N., Davis, I. D., Mardiak, J., Szczylik, C., Lee, E., Wagstaff, J., Barrios, C. H., Salman, P., Gladkov, O. A., Kavina, A., Zarba, J. J., Chen, M., McCann, L., Pandite, L., Roychowdhury, D. F. and Hawkins, R. E. (2010) Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J. Clin. Oncol. 28, 1061-1068. https://doi.org/10.1200/JCO.2009.23.9764
  163. Strumberg, D., Voliotis, D., Moeller, J. G., Hilge, R. A., Richly, H., Kredtke, S., Beling, C., Scheulen, M. E. and Seeber, S. (2002) Results of phase I pharmacokinetic and pharmacodynamic studies of the Raf kinase inhibitor BAY 43-9006 in patients with solid tumors. Int. J. Clin. Pharmacol. Ther. 40, 580-581. https://doi.org/10.5414/CPP40580
  164. Sun, S. Y., Rosenberg, L. M., Wang, X., Zhou, Z., Yue, P., Fu, H. and Khuri, F. R. (2005) Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res. 65, 7052-7058. https://doi.org/10.1158/0008-5472.CAN-05-0917
  165. Takeuchi, H., Kondo, Y., Fujiwara, K., Kanzawa, T., Aoki, H., Mills, G. B. and Kondo, S. (2005) Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res. 65, 3336-3346.
  166. Tang, P., Steck, P. A. and Yung, W. K. (1997) The autocrine loop of TGF-alpha/EGFR and brain tumors. J. Neurooncol. 35, 303-314. https://doi.org/10.1023/A:1005824802617
  167. Tokarski, J. S., Newitt, J. A., Chang, C. Y. J., Cheng, J. D., Wittekind, M., Kiefer, S. E., Kish, K., Lee, F. Y. F., Borzillerri, R., Lombardo, L. J., Xie, D. L., Zhang, Y. Q. and Klei, H. E. (2006) The structure of dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res. 66, 5790-5797. https://doi.org/10.1158/0008-5472.CAN-05-4187
  168. Uramoto, H. and Mitsudomi, T. (2007) Which biomarker predicts benefi t from EGFR-TKI treatment for patients with lung cancer? Br. J. Cancer 96, 857-863. https://doi.org/10.1038/sj.bjc.6603665
  169. US FDA. (2010) Guidance for industry: codevelopment of two or more unmarketed investigational drugs for use incombination. FDA [online], http://www.fda.gov/downloads/Drugs/GuidanceCompliance-RegulatoryInformation/Guidances/UCM236669.pdf (2010).
  170. Vinitsky, A., Michaud, C., Powers, J. C. and Orlowski, M. (1992) Inhibition of the chymotrypsin like activity of the pituitary multicatalytic proteinase complex. Biochemistry 31, 9421-9428. https://doi.org/10.1021/bi00154a014
  171. Vivanco, I. and Mellinghoff, I. K. (2010) Epidermal growth factor receptor inhibitors in oncology. Curr. Opin. Oncol. 22, 573-578. https://doi.org/10.1097/CCO.0b013e32833edbdf
  172. Voges, D., Zwickl, P. and Baumeister, W. (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68, 1015-1068. https://doi.org/10.1146/annurev.biochem.68.1.1015
  173. Wakeling, A. E., Guy, S. P., Woodburn, J. R., Ashton, S. E., Curry, B. J., Barker, A. J. and Gibson, K. H. (2002) ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res. 62, 5749-5754.
  174. Weisberg, E., Manley, P. W., Breitenstein, W., Bruggen, J., Cowan-Jacob, S. W., Ray, A., Huntly, B., Fabbro, D., Fendrich, G., Hall-Meyers, E., Kung, A. L., Mestan, J., Daley, G. Q., Callahan, L., Catley, L., Cavazza, C., Azam, M., Neuberg, D., Wright R. D., Gilliland, D. G. and Griffi n J. D. (2005) Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7, 129-141. https://doi.org/10.1016/j.ccr.2005.01.007
  175. Weisberg, E., Manley, P., Mestan, J., Cowan-Jacob, S., Ray, A. and Griffi n, J. D. (2006) AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. Br. J. Cancer 94, 1765-1769. https://doi.org/10.1038/sj.bjc.6603170
  176. Wilhelm, S. M., Carter, C., Tang, L., Wilkie, D., McNabola, A., Rong, H., Chen, C., Zhang, X., Vincent, P., McHugh, M., Cao, Y., Shujath, J., Gawlak, S., Eveleigh, D., Rowley, B., Liu, L., Adnane, L., Lynch, M., Auclair, D., Taylor, I., Gedrich, R., Voznesensky, A., Riedl, B., Post, L. E., Bollag, G. and Trail, P. A. (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64, 7099-7109. https://doi.org/10.1158/0008-5472.CAN-04-1443
  177. Wilhelm, S., Carter, C., Lynch, M., Lowinger, T., Dumas, J., Smith, R. A., Schwartz, B., Simantov, R. and Kelley, S. (2006) Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov. 5, 835-844. https://doi.org/10.1038/nrd2130
  178. Winston, J. T., Strack, P., Beer-Romero, P., Chu, C. Y., Elledge, S. J. and Harper, J.W. (1999) The SCF beta-TRCP-ubiquitin ligase complex associates specifi cally with phosphorylated destruction motifs in I kappa B alpha and beta-catenin and stimulates I kappa B alpha ubiquitination in vitro. Genes Dev. 13, 270-283. https://doi.org/10.1101/gad.13.3.270
  179. Wright, J. J. (2010) Combination therapy of bortezomib with novel targeted agents: an emerging treatment strategy. Clin. Cancer Res. 16, 4094-4104. https://doi.org/10.1158/1078-0432.CCR-09-2882
  180. Wrigley, J. D., Eckersley, K., Hardern, I. M., Millard, L., Walters, M., Peters, S. W., Mott, R., Nowak, T., Ward, R. A., Simpson, P. B. and Hudson, K. (2011) Enzymatic characterisation of USP7 deubiquitinating activity and inhibition. Cell Biochem. Biophys. Published online: 06 April 2011.
  181. Wu, S., Chen, J. J., Kudelka, A., Lu, J. and Zhu X. (2008) Incidence and risk of hypertension with sorafenib in patients with cancer: a systematic review and meta-analysis. Lancet Oncol. 9, 117-123. https://doi.org/10.1016/S1470-2045(08)70003-2
  182. Xia, W., Mullin, R. J., Keith, B. R., Liu, L. H., Ma, H., Rusnak, D. W., Owens, G., Alligood, K. J. and Spector, N. L. (2002) Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene 21, 6255-6263. https://doi.org/10.1038/sj.onc.1205794
  183. Yarden, Y. and Sliwkowski, M. X. (2001) Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2, 127-137. https://doi.org/10.1038/35052073
  184. Yoshida, M., Shimazu, T. and Matsuyama, A. (2003) Protein deacetylases: enzymes with functional diversity as novel therapeutic targets. Prog. Cell Cycle Res. 5, 269-278.
  185. Zavrski, I., Kleeberg, L., Kaiser, M., Fleissner, C., Heider, U., Sterz, J., Jakob, C. and Sezer, O. (2007) Proteasome as an emerging therapeutic target in cancer. Curr. Pharm. Des. 13, 471-485. https://doi.org/10.2174/138161207780162908
  186. Zhang, J., Yang, P. L. and Gray, N. S. (2009) Targeting cancer with small molecule kinase inhibitors. Nature Rev. Cancer 9, 28-39. https://doi.org/10.1038/nrc2559

Cited by

  1. Synthesis and Biological Evaluation of New Quinoxaline Derivatives of ICF01012 as Melanoma-Targeting Probes vol.5, pp.5, 2014, https://doi.org/10.1021/ml400468x
  2. KRASmutant tumor subpopulations can subvert durable responses to personalized cancer treatments vol.10, pp.2, 2013, https://doi.org/10.2217/pme.13.1
  3. Heteroleptic Schiff base complexes containing terpyridine as chemical nucleases and their biological potential: A study of DNA binding and cleaving, antimicrobial and cytotoxic tendencies vol.31, pp.6, 2017, https://doi.org/10.1002/aoc.3629
  4. PEGylation enhances the tumor selectivity of melanoma-targeted conjugates vol.13, pp.2, 2015, https://doi.org/10.1039/C4OB01751J
  5. Dicopper(II) and Dizinc(II) Complexes with Nonsymmetric Dinucleating Ligands Based on Indolo[3,2-c]quinolines: Synthesis, Structure, Cytotoxicity, and Intracellular Distribution vol.52, pp.17, 2013, https://doi.org/10.1021/ic401573d
  6. Doxorubicin-loaded environmentally friendly carbon dots as a novel drug delivery system for nucleus targeted cancer therapy vol.159, 2017, https://doi.org/10.1016/j.colsurfb.2017.07.030
  7. Synthesis, characterization, molecular structures and anticancer activity studies 2-furan-2-ylmethyleneamino-phenyl-iminomethylphenolcomplexes vol.11, pp.17, 2011, https://doi.org/10.17485/ijst/2018/v11i17/120413