DOI QR코드

DOI QR Code

Some Properties of the Closure Operator of a Pi-space

  • Mao, Hua (Department of Mathematics, Hebei University) ;
  • Liu, Sanyang (Department of Mathematics, Xidian University)
  • 투고 : 2010.04.16
  • 심사 : 2010.10.28
  • 발행 : 2011.09.23

초록

In this paper, we generalize the definition of a closure operator for a finite matroid to a pi-space and obtain the corresponding closure axioms. Then we discuss some properties of pi-spaces using the closure axioms and prove the non-existence for the dual of a pi-space. We also present some results on the automorphism group of a pi-space.

키워드

과제정보

연구 과제 주관 기관 : National Nature Science Foundation of China

참고문헌

  1. D. Betten and W. Wenzel, On linear spaces and matroids of arbitrary cardinality, Algebra Universalis, 49(2003), 259-288. https://doi.org/10.1007/s00012-003-1814-4
  2. G. Birkhoff, Lattice Theory, 3rd. ed. Amer. Math. Society, Providence, 1967.
  3. G. Gratzer, General Lattice Theory, 2nd. ed. Birkhauser Verlag, Basel, 1998.
  4. T. W. Hungerford, Algebra, Springer-Verlag, New York, 1974.
  5. F. Maeda and S. Maeda, Theory of Symmetric Lattices, Springer-Verlag, Berlin, 1970.
  6. H. Mao and S. Liu, Remarks on external elements in independence spaces, Southeast Asian Bulletin of Mathematics, 29(2005), 939-944.
  7. H. Mao, On geometric lattices and matroids of arbitrary cardinality, Ars Combinatoria, 8(2006), 23-32.
  8. H. Mao, An axiom scheme for cyclic ats of a matroid of arbitrary cardinality, International J. of Pure and Appl. Math., 41(8)(2007), 1107-1122.
  9. H. Mao, Characterization of disconnected matroids, Algebra Colloquium, 15(1)(2008), 129-134. https://doi.org/10.1142/S1005386708000138
  10. H. Mao, Single element extensions of matroids of arbitrary cardinality, Acta Mathematica Sinica (Chinese series), 50(6)(2007), 1271-1280(in Chinese).
  11. H. Mao, Independence spaces generated by a graph, East-West J. of Math., 9(1)(2007), 63-68.
  12. H. Mao and G.Wang, Some properties of base-matroids of arbitrary cardinality, Rocky Mountain J. of Math., 409(1)(2010), 291-303.
  13. H. Mao, The sub-independence-space, Chinese Quart. J. of Math., 25(2)(2010), 293-299.
  14. H. Mao, Paving matroids of arbitrary cardinality, Ars Combinatoria, 90(2009), 245-256.
  15. H. Mao and G. Wang, On the basis graph of a matroid of arbitrary cardinality, Advances in Pure and Appl. Math., (2)(2010)275-284.
  16. H. Mao and S. Liu, Relations between some axiom systems for matroids and the automorphism groups of a matroid, J. of Xidian University, 28(1)(2001), 48-51(in Chinese)
  17. J. Oxley, Infinite Matroids, in Matroid Application, ed. by Neil White, Cambridge University Press, Cambridge, 1992, 73-90.
  18. J. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
  19. M. Stern, Semimodular Lattices: Theory and Applications, Cambridge University Press, Cambridge, 1999.
  20. D. J. A. Welsh, Matroid Theory, Academic Press, London, 1976.
  21. N. White, Theory of Matroids, Cambridge University Press, Cambridge, 1976.