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Abstract. In this paper, we will construct symmetric links by using the method adapted

from the graph theory, and study a Seifert matrix of a symmetric link from the information

of the Seifert matrix of the base link and the corresponding group action.

1. Introduction

The Seifert matrix of a link is derived from a connected Seifert surface of
a link and related to the link invariants such as the signature, the nullity, the
Arf invariant, the determinant, and the one-variable Alexander polynomial, see
[2][4][6][7][8][11][13].

A symmetric link L in R3 is a link with a diagram on which a finite group can
act. Figure 1 shows a link diagram, on which the Klein 4-group Z2 ⊕ Z2 can act.
The periodic links of order n are symmetric links whose acting group is the cyclic
group Zn.

Figure 1: Symmetric link
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It is well-known in topological graph theory that the covering graph is con-
structed by a voltage assignment on the set of edges of the base graph, and that
there is one-to-one correspondence between the set of all embeddings of a graph and
the set of all rotation schemes. Also, by lifting the rotation scheme of a base graph
to that of the covering graph, one can get the embedding of the covering graph, see
[3][14].

In this paper, we will introduce a method to construct symmetric links by
adapting the graph theoretical settings to link diagrams, which are 4-valent graphs
embedded in S2 with under over information, and try to calculate the Seifert matrix
of such a resulting symmetric link from the information of the base link and the
information of the acting group.

Theorem 1.1. Let D be a diagram of a link with two fixed edges e and f which
is depicted as in Figure 8. If ϕ : E⃗(D) → G is a voltage assignment such that
ϕ(g) = 1G for all edge g ̸= e, f . A Seifert matrix of the symmetric link D×ϕ G can
be obtained from the Seifert matrix of D and the information of the group action.

2. Seifert matrices of links

In this section, we will study a method to calculate a Seifert matrix of a link.
In 1934, H. Seifert [12] showed how to calculate the Alexander polynomial of a link
by using an orientable surface whose boundary is the given link. In fact, he gave an
algorithm to produce such a surface from any link diagram, and also gave a formula
for the Alexander polynomial in terms of the linking numbers of the curves on the
surface. See [5] [9] for more details. A Seifert surface for an oriented link L in S3 is
a connected compact oriented surface contained in S3 which has L as its boundary.
We will give a brief sketch about the Seifert algorithm.

Let D be a diagram of an oriented link L. In a small neighborhood of each
crossing, make the following local change to the diagram:

Delete the crossing and reconnect the loose ends in the only way com-
patible with the orientation.

When this has been done at every crossing, the diagram becomes a set of disjoint
simple loops in the plane. It is a diagram with no crossings. These loops are called
Seifert circles. By attaching a disc to each Seifert circle and by connecting a half-
twisted band at the place of each crossing of D according to the crossing sign, we
get a Seifert surface for L. The Seifert graph Γ of D is constructed as follows:

Associate a vertex with each Seifert circle and connect two vertices
with an edge if their Seifert circles are connected by a twisted band.

Note that a Seifert graph Γ is planar, and that if D is connected, so do Γ.
Since Γ is a deformation retract of the Seifert surface F , their homology groups
are isomorphic: H1(F ) ∼= H1(Γ). Let T be a spanning tree for Γ. For each edge
e ∈ E(Γ) \E(T ), T ∪ e contains a unique simple closed circuit Te, which represents
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an 1− cycle in F . The set {Te | e ∈ E(Γ) \E(T )} of these 1−cycles is a homology
basis for F . For such a circuit Te, let T

+
e denote the circuit in S3 obtained by lifting

slightly along the positive normal direction of F . A Seifert matrix of L associated
to F is the n× n matrix M = (mij) defined by

mij = lk(Tei , T
+
ej ),

where E(Γ) \ E(T ) = {e1, · · · , en}. The Seifert matrix of L depends on the Seifert
surface F and the choice of generators of H1(F ).

Let M be any Seifert matrix for an oriented link L. The Alexander polynomial
∆L(x) ∈ Z[x±], the determinant det(L) and the signature σ(L) of L are defined by

∆L(x) = det(xM − x−1MT ),

det(L) =
∣∣det(M +MT )

∣∣ ,
σ(L) = σ(M +MT ).

Lemma 2.1. For e, f ∈ E(Γ)\E(T ), Te ∩ Tf ≡ Tef is either empty or a simple
path v0v1 · · · vk in the spanning tree T .

Proof. If Te does not meet to Tf , then Te∩Tf = ∅. Now, we assume that Te∩Tf ̸= ∅.
Suppose that Te ∩ Tf is not connected. Let v0 and v1 be two vertices of Te ∩ Tf

which are in different components of Te ∩ Tf . Since Te and Tf are connected, there
exists a path Pe in Te from v0 to v1 and a path Pf in Tf from v0 to v1. Then
Pe ̸= Pf , for if not, v0 to v1 are in the same component of Te ∩ Tf . A cycle Pe ∪Pf

is in Te ∪ Tf ⊂ T . This is a contradiction to T is a tree. 2

If Te∩Tf is not an empty set, let v0 and v1 denote two ends of Te∩Tf . Without
loss of generality, we may assume that the neighborhood of v0 looks like Figure 2.
In other words, the cyclic order of edges incident to v0 is given by Te ∩ Tf , Te, Tf

with respect to the positive normal direction of the Seifert surface. Also we may
assume that the directions of Te and Tf are given so that v0 is the starting point of
Te ∩ Tf . For, if the direction is reversed, one can change the direction to adapt to
our setting so that the resulting linking number changes its sign.

Theorem 2.2. For e, f ∈ E(Γ)\E(T ), let p and q denote the numbers of edges
in Te ∩ Tf corresponding to positive crossings and negative crossings, respectively.
Suppose that the local shape of Te ∩ Tf in F looks like Figure 2. Then,

lk(Te, T
+
f ) =

{
− 1

2 (p− q), if p+ q is even;
− 1

2 (p− q + 1), if p+ q is odd, and

lk(Tf , T
+
e ) =

{
− 1

2 (p− q), if p+ q is even;
− 1

2 (p− q − 1), if p+ q is odd.

Proof. If Te ∩ Tf is an empty set, clearly lk(Te, T
+
f ) = lk(Tf , T

+
e ) = 0 because Te

and Tf are disjoint.
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Suppose that Te ∩ Tf is not the empty set so that Te ∩ Tf is a simple path in
the spanning tree T . If there are two consecutive edges in Te ∩ Tf whose corre-
sponding crossings have different signs, they do not affect in calculating lk(Te, T

+
f )

or lk(Tf , T
+
e ), as seen in Figure 3. Hence, it suffices to show that the result is true

for the cases: (p > 0 and q = 0) and (p = 0 and q > 0).
Suppose that p > 0 and q = 0 and that p is even. We will explain the result is

true for p = 2 and q = 0 (see Figure 4), which is applicable for any even number p
and q = 0.

From Figure 4, one can easily check that lk(Te, T
+
f ) = lk(Tf , T

+
e ) = −1

2p. Note
that there should be two auxiliary crossings (circled crossings) in the second picture
to realize the whole paths, but they have different sign so the linking number does
not change.

If p is odd, we will also explain the result is true for p = 3 and q = 0 (see
Figure 5), which is applicable for any odd number p and q = 0.

In this case, there should be an auxiliary crossing (circled crossing) in each pic-
ture to realize the whole paths, and that the auxiliary crossing in the first picture
increase the linking number while the auxiliary crossing in the second picture de-
crease the linking number so that lk(Te, T

+
f ) = lk(Tf , T

+
e )− 1. Indeed, for the case

p = 3 and q = 0, lk(Te, T
+
f ) = −2 and lk(Tf , T

+
e ) = −1.

If p = 0 and q > 0, one can treat the case similarly. 2
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Example 2.3. Let P (3,-5,5) be the pretzel knot. By Theorem 2.2, we have
lk(e, f+) = −1

2 (5 − 0 − 1) = −2 , lk(f, e+) = lk(e+, f) = −1
2 (5 − 0 + 1) = −3,

lk(e, e+) = − 1
2 (5−3) = −1 and lk(f, f+) = − 1

2 (5−5) = 0. Hence its Seifert matrix
is

M =

(
−1 −2
−3 0

)

Remark 2.4. It is well known that the Seifert matrix of P (p, q, r) is

M = 1
2

(
p+ q q + 1
q − 1 q + r

)
,

where p, q and r be odd integers.

3. Graph theoretical preliminary

A graph Γ = (V (Γ), E(Γ)) consists of a finite set V (Γ) of vertices and a finite
set E(Γ) of edges. An embedding of Γ into a surface F is a continuous injection
i : Γ → F . An embedding of Γ into a surface F is called a 2-cell embedding if
each component of F \ i(Γ), called a region of the embedding, is homeomorphic
to the standard disc. For a vertex vi ∈ V (Γ), let V (vi) be the set of all vertices
incident to vi, and let Pvi : V (vi) → V (vi) be a cyclic permutation on V (vi). We
call (Pv1Pv2 · · · , Pvn) Edmond’s rotation scheme.
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Proposition 3.1([14]). A rotation scheme (Pv1 , Pv2 , · · · , Pvn) determine a 2-cell
embedding of Γ in a surface F such that there is an orientation on F which is a
cyclic ordering of the edge [vi, vk] at i in which the immediate successor to [vi, vk] is
[vj , Pvi(vk)]. Conversely, for a given 2-cell embedding i : Γ → F in a surface F with
a given orientation, there is a corresponding rotation scheme (Pv1 , Pv2 , · · · , Pvn)
determining that embedding.

Let Γ be a directed graph and G a finite group. Let D(Γ) denote the set
of all directed edges of Γ and let ϕ : D(Γ) → G be a function, called a voltage
assignment, satisfying ϕ(e−1) = ϕ(e)−1 for all e ∈ D(Γ). We call a triple (Γ, G, ϕ) a
voltage graph. The covering graph Γ×ϕ G for (Γ, G, ϕ) has the vertex set V (Γ)×G
and each edge e = uv of Γ determines the edges (u, g)(v, gϕ(e)) of Γ ×ϕ G, for all
g ∈ G. Notice that Γ ×ϕ G is a |G|-fold regular covering space of Γ; in fact, every
regular covering space of Γ can be obtained in this manner.

Example 3.2. Let Γ be a graph as in the left of Figure 7 and let D(Γ) be the
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set of directed edges of Γ. Let ϕ : D(Γ) → Z5 be a voltage assignment defined by
(u, u) → 1, (u, v) → 0, (v, v) → 2, where (u, u), (u, v), (v, v) ∈ D(Γ). Then, Γ×ϕ G
is the graph in the right of Figure 7.
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Figure 7:

The number of components of D×ϕG can be calculated by the following propo-
sition.

Proposition 3.3([14]). Let Γ be a directed graph. Let ϕ : E(Γ) → G be a voltage
assignment. Let H be the subgroup of G generated by Im(ϕ). Then the number of
components of Γ×ϕ G is

[G : H] = |G| /|H|.

Now consider a voltage graph (Γ, G, ϕ) which is 2-cell embedded in an orientable
surface S, as described algebraically by the rotation scheme P = (Pv1 , Pv2 , . . . , Pvn).
We define the lift P̃ of P to Γ×ϕ G as follows: if Pv(v, u) = (v, w), then

P̃(v,g)((v, g), (u, gϕ(v, u))) = ((v, g), (w, gϕ(v, w))),

for each g ∈ G. Since P̃ = {P̃(v,g)|(v, g) ∈ V (Γ ×ϕ G)} is a rotation scheme of

Γ×ϕ G, it determines the natural embedding of Γ×ϕ G into a surface S̃.
For a region R of the embedding of Γ on S induced by P , let |R|ϕ be the order of

ϕ(∂R) = ϕ(e1)ϕ(e2) · · ·ϕ(en) in G, where ∂R = e1, e2, . . . , en is the ordered bound-
ary of R. Since ϕ(∂R) is unique up to inverses and conjugacy, |R|ϕ is independent of
the orientation of R and of the initial vertex of ∂R. The following is well-known in
topological graph theory, from which one can calculate the genus of the embedding
surface S̃.

Proposition 3.4([14]). Let (Γ, G, ϕ) be a voltage graph with rotation schemes P

and P̃ which determine 2-cell embeddings of Γ and Γ×ϕG on the orientable surfaces

S and S̃, respectively. Then, there exists a branched covering ρ : S̃ → S such that

(1) ρ−1(Γ) = Γ×ϕ G.
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(2) ρ| : Γ×ϕ G → Γ is the graph covering map.

(3) If b is a branch point of multiplicity m, then there exists a face R in Γ em-
bedded in S such that b ∈Int(R) and |R|ϕ = m.

(4) If R is a k-gon in Γ embedded in S, then ρ−1(R) has
|G|
|R|ϕ

components, each

of which is a k|R|ϕ-gon region in Γ×ϕ G → S̃.

4. Construction of symmetric links

Let D be a diagram of an oriented link L embedded in R2 ⊂ S2, which can
be seen as a 4-valent graph with under/over information at each vertex. Let V , E
and F denote the numbers of vertices, edges and faces of the embedded 4-valent
graph D, respectively. Let G be a finite group of order n and ϕ : E⃗(D) → G be a

voltage assignment on a link diagram D, where E⃗(D) is the set of directed edges

of D. Let D ×ϕ G ↪→ S̃ denote the embedding of D ×ϕ G determined by the lifted

rotation scheme with Ṽ vertices, Ẽ edges and F̃ faces. If the embedding surface
S̃ is the sphere S2, one can obtain a symmetric link D ×ϕ G by recovering the
under/over information at each vertex according to the under/over information of

the corresponding vertex of D. If S̃ is not the sphere S2, one may see the embedding
D ×ϕ G ↪→ S̃ as a kind of virtual symmetric link.

One can calculate the genus g̃ of S̃, by using the definition of D ×ϕ G and
Proposition 3.4.

Theorem 4.1. Let D be a connected link diagram. Let ϕ : E⃗(D) → G be a voltage

assignment. Let H be the subgroup of G generated by Im(ϕ). The genus g̃ of S̃ is
given by

g̃ = |G| ( 1

|H|
+

1

2

∑
R

(1− 1

|R|ϕ
)− 1).

In particular, if S̃ is connected, then

g̃ = 1− |G|+ |G|
2

∑
R

(1− 1

|R|ϕ
).

Proof. Notice that Ṽ = |G|V, Ẽ = |G|E, and F̃ =
∑
R

|G|
|R|ϕ

. By Proposition 3.3,

D ×ϕ G has x = [G : H] = |G| /|H| components. Notice that S̃ has also x com-
ponents. By connecting all components by x − 1 handles, one can have a con-
nected surface Ŝ whose genus is the same with S̃. For the connected surface Ŝ,
V̂ = Ṽ , Ê = Ẽ + (x− 1) and F̂ = F̃ − (x− 1). Euler’s formula says that

2− 2ĝ = Ṽ − {Ẽ + (x− 1)}+ {F̃ − (x− 1)}.
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Since Ṽ = |G|V, Ẽ = |G|E and F̃ =
∑
R

|G|
|R|ϕ

,

|G| (V − E)− 2x+
∑
R

|G|
|R|ϕ

= −2g̃.

Since F =
∑
R

1 and V − E + F = 2, we have

g̃ = x− |G|+ |G|
2

∑
R

(1− 1

|R|ϕ
). 2

From Theorem 4.1 and Proposition 3.3, one can see that

(1) If ϕ : E⃗(D) → G is the constant map at the identity, then S̃ is the disjoint
union of |G| copies of S2.

(2) For a fixed edge e, if ϕ(e) = a ̸= 1G and ϕ(f) = 1G for every edge f ̸= e,

then S̃ is the disjoint union of
|G|
|a|

copies of S2, where 1G denotes the identity

element of G.

Theorem 4.2. Suppose that ϕ : E⃗(D) → G be a voltage assignment such that there
are exactly two edges e and f with non-trivial voltages ϕ(e) = a and ϕ(f) = b, and
that e and f are on the boundary of the same region, see Figure 8. Then

(1) if b = a−1 ∈ G, then S̃ is the disjoint union of
|G|
|a|

copies of S2.

(2) if G = Zp(p is prime) and b ̸= a−1, then S̃ is the surface of genus
p− 1

2
.

(3) if every element of G is of order 2, then S̃ is a disjoint union of suitable
copies of S2.

Figure 8:

Proof. By considering the three regions whose boundaries contain the fixed edges e
and f , we can get ∑

R

1

|R|ϕ
= (F − 3) +

1

|ab|
+

1

|a|
+

1

|b|
.
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(1) If b = a−1,
∑
R

1

|R|ϕ
= (F − 3) + 1 +

2

|a|
. Since the number of components

of S̃ is
|G|
|a|

by Proposition 3.3, g̃ = 0 by Theorem 4.1.

(2) Since p is prime and since a, b and ab are non-trivial elements, their order

are p so that
∑
R

1

|R|ϕ
= (F − 3) +

3

p
. Since the number of components of S̃ is 1 by

Proposition 3.3, g̃ =
p− 1

2
by Theorem 4.1.

(3) If b = a−1, it holds by (1). If b ̸= a−1, since every element of G is of order 2,∑
R

1

|R|ϕ
= (F −3)+

3

2
. Since the number of components of S̃ is

|G|
2

by Proposition

3.3, g̃ = 0 by Theorem 4.1. 2

As seen in the above theorem, the embedding surface S̃ for D×ϕ G may not be

the sphere, in general. In the case that S̃ is the sphere, the embedding of D ×ϕ G

into S̃ ∼= S2 is a symmetric diagram of a link, on which the group G can act. For
the case that S̃ is not the sphere, one can see the embedding of D ×ϕ G into S̃ as
a symmetric virtual diagram of a virtual link, on which the group G can act.

Example 4.3. Let D be a diagram as in the left of Figure 9, which is the denomi-
nator of the rational tangle C(3,−2). Let G be the Klein 4-group Z2⊕Z2. Consider

the voltage assignment ϕ : E⃗(D) → G given by ϕ(e) = (1, 0) and ϕ(f) = (0, 1) as

in the left of Figure 9. By Theorem 4.2, the embedding surface S̃ for D×ϕ G is the
sphere S2. In fact, the symmetric diagram D×ϕ G obtained by our construction is
given in the right of Figure 9.

Figure 9:
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5. Seifert matrices of symmetric links

In this section, we will try to find a Seifert matrix of a symmetric link D×ϕ G,
in the case that the corresponding embedding surface is the sphere.

If G is trivial, clearly D×ϕG is D, and hence a Seifert matrix of D×ϕG equals
to a Seifert matrix of D. From now on, we assume that G is a non-trivial group.

Lemma 5.1. Suppose that ϕ : E⃗(D) → G is the constant function at 1G. Then a

Seifert matrix M̃ of D ×ϕ G has the form;

M̃ ∼= (
⊕
|G|

M)
⊕

O|G|−1 =


M O · · · O O
O M · · · O O
...

...
. . .

...
...

M O
O O · · · O O

 ,

where |G| denotes the order of G and O is the zero matrix.

Proof. From Theorem 4.1 and Proposition 3.3, one can see that D ×ϕ G is the
disjoint union of |G| copies of D, which is embedded in the disjoint union of |G|
copies of S2. 2

Corollary 5.2. Suppose that ϕ : E⃗(D) → G is the constant function at 1G. Then
det(D ×ϕ G) = 0, σ(D ×ϕ G) = |G|σ(L) and ∆(D ×ϕ G) = 0.

Proof. It is trivial by definitions of the determinant, the signature, and the Alexan-
der polynomial of L. 2

Lemma 5.3. Suppose that there is one edge e such that ϕ(e) = a ̸= 1G and

ϕ(e′) = 1G for all e′ ̸= e. Then a Seifert matrix M̃ of D ×ϕ G has the form:

M̃ ∼= (
⊕
|G|

M)
⊕

O |G|
|a| −1

=


M O · · · O O
O M · · · O O
...

...
. . .

...
...

M O
O O · · · O O

 .

Proof. From Theorem 4.1 and Proposition 3.3, one can see that D ×ϕ G is the

disjoint union of
|G|
|a|

copies of the connected sum D♯D♯ · · · ♯D (|a| times), which is

embedded in the disjoint union of
|G|
|a|

copies of S2. 2

Corollary 5.4. Suppose that there is one edge e such that ϕ(e) = a ̸= 1G and
ϕ(e′) = 1G for all e′ ̸= e. Then
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(1) if a is a generator of G, then det(D×ϕG) = det(L)|G|, σ(D×ϕG) = |G|σ(L)
and ∆(D ×ϕ G)=∆(L)|G|.

(2) if a is not a generator of G, then det(D ×ϕ G) = 0, σ(D ×ϕ G) = |G|σ(L)
and ∆(D ×ϕ G) = 0.

Proof. (1) If a is a generator of G,
|G|
|a|

= 1. By Lemma 5.3, M̃ ∼= ⊕|G|M . By

definitions of the determinant, the signature, and the Alexander polynomial of L,
det(D ×ϕ G) = det(L)|G|, σ(D ×ϕ G) = |G|σ(L) and ∆(D ×ϕ G)=∆(L)|G|.

(2) If a is not a generator of G, then
|G|
|a|

> 1 so, by Lemma 5.3, det(D×ϕG) = 0,

σ(D ×ϕ G) = |G|σ(L) and ∆(D ×ϕ G) = 0. 2

Now suppose that there exist two edges e, f in D such that ϕ(e) = a ̸=
1G, ϕ(f) = b ̸= 1G and ϕ(g) = 1G for every edge g ̸= e, f .

Without loss of generality, we may assume that e and f are contained in different
Seifert circles. For, if they are contained in the same Seifert circle, by applying
Reidemeister move II, we can change D into D′ so that the corresponding edges are
contained in different Seifert circles, as seen in Figure 10. It is easy to check that
D×ϕ G and D′ ×ϕ G are the diagrams of the same link and that the Seifert matrix
of D ×ϕ G equals to that of D′ ×ϕ G.

TD TD TD

D
/

Figure 10:

Let F be a Seifert surface obtained from D by the Seifert algorithm and Γ its
Seifert graph. Let T be a spanning tree of Γ and let ⟨a, b⟩ denote the subgroup of
G generated by a and b. From Proposition 3.1 and 3.4, we know that

(1) ρ−1(T ) is a |G|-fold branched covering of T .

(2) D ×ϕ G has c =
|G|

|⟨a, b⟩|
components, say D̃1, D̃2, · · · , D̃c.

(3) ρ−1(T ) has also c components T̃1,T̃2,· · · ,T̃c, each of them is a spanning tree
of the corresponding component.

(4) T̃i is a |⟨a, b⟩|-fold branched covering of T for all i.

From now on, we will try to find the set of generators of H1(F̃ ) of the Seifert

surface F̃ ofD×ϕG. First of all, we set the voltage group G by G = {g1, g2, · · · , gn}.
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For each edge a, we denote ρ−1(a) by {ag1 , ag2 , · · · , agn}. Let u and v be the
vertices in the Seifert graph Γ correspond to the Seifert circles containing e and
f , respectively. Since Γ is connected, the spanning tree T of Γ is also connected.
Hence there is a unique path P from u to v contained in T . Note that ρ−1(P ) is a
branched covering of P with exactly two branch points u and v, and that ρ−1(P )

has c components P̃1,P̃2,· · · ,P̃c.

If the length of P is l, the number of the vertices of P̃i is (l−1) |⟨a, b⟩|+ |⟨a,b⟩|
|a| +

|⟨a,b⟩|
|b| so that the number of edges in a spanning tree of P̃i is given by (l−1) |⟨a, b⟩|+

|⟨a,b⟩|
|a| + |⟨a,b⟩|

|b| − 1. Hence the number of edges in P̃i which is not in a spanning tree

is l |⟨a, b⟩| − {(l − 1) |⟨a, b⟩|+ |⟨a,b⟩|
|a| + |⟨a,b⟩|

|b| − 1} = |⟨a, b⟩| − |⟨a,b⟩|
|a| − |⟨a,b⟩|

|b| + 1.

Since ρ−1(P ) has |G|
|⟨a,b⟩| components, the number of edges in ρ−1(P ) not in a

spanning tree is k = |G| ( 1
|⟨a,b⟩| −

1
|a| −

1
|b| + 1). In other word, for a spanning tree

T of Γ, ρ−1(T ) is not a spanning tree of ρ−1(Γ), in general. But, by removing
|G| ( 1

|⟨a,b⟩| −
1
|a| −

1
|b| + 1) edges from ρ−1(e0) for a fixed edge e0 in P , we can get a

spanning tree T̃ of ρ−1(Γ).
Since for each edge e′ of Γ, not in T , ρ−1(e′) consists of |G| edges of ρ−1(Γ),

not in T̃ . Hence the number of generators of ρ−1(Γ) is

|G| × (the number of generators of Γ +
1

|⟨a, b⟩|
− 1

|a|
− 1

|b|
+ 1).

Let {a1, a2, · · · , am} denote the set of generators of H1(F ). Since ai is not in
the spanning tree T of Γ, {agji | i = 1, · · · ,m, j = 1, · · · , n} is a set of edges of the

Seifert graph ρ−1(Γ) of D ×ϕ G which are not in the spanning tree T̃ .
For the fixed edge e0 in P , by choosing k = |G| ( 1

|⟨a,b⟩| −
1
|a| −

1
|b| +1) edges, say

{eg10 , eg10 , · · · , egk0 }, from ρ−1(e0), we can obtain all other generators of H1(F̃ ). The

set of all generators of H1(F̃ ) is given by

{agji | i = 1, · · · ,m, j = 1, · · · , n} ∪ {eg10 , eg20 , · · · , egk0 }.

Example 5.5. For the diagram with the voltage assignment in Example 4.3, the
number of generators of its Seifert graph is 2, while the number of components
of D ×ϕ G is 1 because |G| = |Z2 ⊕ Z2| = 4 and |⟨a, b⟩| = |⟨(1, 0), (0, 1)⟩| = 4.
Since |a| = |b| = 2, the number of generators of the Seifert surface of D ×ϕ G is
4(2+ 1

4 −
1
2 −

1
2 +1) = 9. One can see the generators of the Seifert surface of D×ϕG

at Figure 11.

To calculate of the linking numbers between two generators of the Seifert Surface
of D ×ϕ G, we need to see through the Seifert graph of the base diagram. For
a ∈ E(Γ) \ E(T ), there exists an unique path in T whose union with the edge a
gives a simple closed circuit Ta.

For the path P between two end vertices u and v with p positive crossings and
q negative crossings, we construct an auxiliary closed path P as follows:
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Figure 11:

· Identify u and v if p+ q is even,

· Connect u and v by an auxiliary edge with positive sign if p+ q is odd.

Notice that P has even number of edges, and that lk(P , P
+
) = − 1

2 (p− q) if p+ q

is even, while lk(P, P
+
) = − 1

2 (p− q + 1) if p+ q is odd.

The calculation of the linking numbers between two generators of F̃ depends on
the relation between the fixed edge e0 and the corresponding generators of F . The
formulae in Lemma 5.6 have the key role in the calculation of the linking numbers.

From now on, for a generator ai of H1(F ), let T c
ai

denote the simple closed path

obtained from P by removing Tai and then adding the edge ai, see Figure 12.

u v

a
i

PTa
i

P

Ta
i

c

Figure 12:

In the following lemmas(Lemma 5.6-Lemma 5.11), let e and f denote the edges
in E(Γ) \ E(T ) such that Te and Tf are depicted in Figure 2.

The following Lemma is about the linking numbers in curves on the Seifert
surface of the base link, which gives an important tool for the calculation of the
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linking numbers of generators of F̃ .

Lemma 5.6. Suppose that Te and Tf have a common edge with P , respectively, and
that Te \ {e} contains pe positive crossings and qe negative crossings and Tf \ {f}
contains pf positive crossings and qf negative crossings. Then

(1) if e0 ∈ Te ∩ Tf ,

lk(T c
f , T

c
e
+) = lk(P , P

+
) + lk(Tf , T

+
e ) +

1

2
{(pe + pf )− (qe + qf )},

lk(T c
e , T

c
f
+) = lk(P , P

+
) + lk(Te, T

+
f ) +

1

2
{(pe + pf )− (qe + qf )}.

(2) if e0 ∈ Tf and if e0 /∈ Te,

lk(T c
f , Te

+) =
1

2
(pe − qe − 1) and lk(Te, T

c
f
+) =

1

2
(pe − qe + 1).

(3) if e0 /∈ Tf and if e0 ∈ Te,

lk(Tf , T
c
e
+) =

1

2
(pf − qf − 1) and lk(T c

e , Tf
+) =

1

2
(pf − qf + 1).

Proof. Suppose that P contains p positive crossings and q negative crossings. Note
that Te ∩ Tf and T c

e ∩ T c
f are simple paths. Let pef and qef denote the numbers of

positive edges and negative edges in Te∩Tf . Then T c
e ∩T c

f consists of p−pe−pf+pef
positive crossings and q − qe − qf + qef negative crossings if p+ q is even, while it
consists of (p+ 1)− pe − pf + pef positive crossings and q − qe − qf + qef negative
crossings if p+ q is odd.

(1) If p+ q is even and if pef + qef is even, then T c
e ∩T c

f consists of even number
of edges because pe + qe and pf + qf are odd. Hence, by Theorem 2.2,

lk(T c
f , T

c
e
+) = −1

2
((p− pe − pf + pef )− (q − qe − qf + qef ))

= −1

2
(p− q) +

1

2
(pe − qe) +

1

2
(pf − qf )−

1

2
(pef − qef )

= lk(P, P
+
) + lk(Tf , T

+
e ) +

1

2
{(pe + pf )− (qe + qf )},

lk(T c
e , T

c
f
+) = lk(P, P

+
) + lk(Te, T

+
f ) +

1

2
{(pe + pf )− (qe + qf )}.

If p+ q is even and if pef + qef is odd, then T c
e ∩ T c

f consists of odd number of
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edges because pe + qe and pf + qf are odd. By Theorem 2.2,

lk(T c
f , T

c
e
+) = −1

2
((p− pe − pf + pef )− (q − qe − qf + qef )− 1)

= −1

2
(p− q) +

1

2
(pe − qe) +

1

2
(pf − qf )−

1

2
(pef − qef − 1)

= lk(P, P
+
) + lk(Tf , T

+
e ) +

1

2
{(pe + pf )− (qe + qf )}

lk(T c
e , T

c
f
+), = lk(P, P

+
) + lk(Te, T

+
f ) +

1

2
{(pe + pf )− (qe + qf )}.

For the case that p+ q is odd, T c
e ∩ T c

f contains (p+1)− pe − pf + pef positive
crossings and q− qe− qf + qef negative crossings. By the similar argument, one can
obtain the required equations.

(2) Notice that Tf
c and Te contain pe positive crossings and qe negative crossings

in common, and that they have the opposite direction. Since Tf
c ∩ Te consists of

pe + qe edges and pe + qe is odd, by Theorem 2.2,

lk(T c
f , Te

+) =
1

2
(pe − qe − 1) and lk(Te, T

c
f
+) =

1

2
(pe − qe + 1).

(3) Similar with (2). 2

The calculation of the linking numbers between two generators of the Seifert
surface of D ×ϕ G depends on the relationship between the lifts eg10 , eg20 , · · · , egk0 of
the fixed edge e0, too. We will give formulae for the calculation case by case.

Lemma 5.7. Suppose that P contains p positive crossings and q negative crossings
and that Te and Tf have a common edge with P , respectively. For α with 1 ≤ α ≤ k

and hence egα0 /∈ E(T̃ ),

(1) if e0 ∈ Te ∩ Tf , then

lk(Tfgα , Tegα
+) =

{
(d− 1)lk(P, P

+
) + lk(T c

f , T
c
e
+), if p+ q is even;

(d− 1)lk(P, P
+
) + lk(T c

f , T
c
e
+) + 1

2d, if p+ q is odd,

lk(Tegα , Tfgα
+) =

{
(d− 1)lk(P, P

+
) + lk(T c

e , T
c
f
+), if p+ q is even;

(d− 1)lk(P, P
+
) + lk(T c

e , T
c
f
+) + 1

2d, if p+ q is odd,

where Tegα0
consists of d copies of P ,

(2) if e0 ∈ Tf and if e0 /∈ Te,

lk(Tfgα , Tegα
+) = lk(T c

f , Te
+), lk(Tegα , Tfgα

+) = lk(Te, T
c
f
+),

(3) if e0 /∈ Tf and if e0 ∈ Te,

lk(Tfgα , Tegα
+) = lk(Tf , T

c
e
+), lk(Tegα , Tfgα

+) = lk(T c
e , Tf

+),
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(4) if e0 /∈ Tf and e0 /∈ Te,

lk(Tfgα , Tegα
+) = lk(Tf , T

+
e ), lk(Tegα , Tfgα

+) = lk(Te, T
+
f ).

Proof. Assume that Te\{e} consists of pe positive crossings and qe negative crossings
and Tf \ {e} consists of pf positive crossings and qf negative crossings, and that
Te ∩ Tf consists of pef positive crossings and qef negative crossings.

(1) Since e0 ∈ Te∩Tf , Tfgα ∩Tegα consists of dp−pe−pf +pef positive crossings
and dq − qe − qf + qef negative crossings. Note that d is even because Tegα0

is a
closed curve which consists of d copies of P , and that pe + qe and pf + qf are odd.
If p+ q is even and if pef + qef is even, Tfgα ∩ Tegα consists of an even number of
edges. By Theorem 2.2 and Lemma 5.6(1),

lk(Tfgα , Tegα
+) = −1

2
((dp− pe − pf + pef )− (dq − qe − qf + qef ))

= d · lk(P, P
+
) + lk(Tf , T

+
e ) +

1

2
{(pe + pf )− (qe + qf )}

= (d− 1)lk(P, P
+
) + lk(T c

f , T
c
e
+),

lk(Tegα , Tfgα
+) = (d− 1)lk(P, P

+
) + lk(T c

e , T
c
f
+),

because lk(P, P
+
) = −1

2 (p− q).
If p + q is even and if pef + qef is odd, Tfgα ∩ Tegα consists of an odd number

of edges so that one can apply Theorem 2.2 and Lemma 5.6(1) to get the required
results.

If p+ q is odd and if pef + qef is even, Tfgα ∩ Tegα consists of an even number
of edges, while if p + q is odd and if pef + qef is odd, Tfgα ∩ Tegα consists of an
odd number of edges. By Theorem 2.2 and Lemma 5.6(1), one can get the required

results. Notice that lk(P , P
+
) = − 1

2 (p− q + 1).
(2) Since e0 ∈ Tf and if e0 /∈ Te, Tfgα and Tegα contains pe positive crossings

and qe negative crossings in common. Since pe + qe is odd, by Theorem 2.2 and
Lemma 5.6(1),

lk(Tfgα , Tegα
+) =

1

2
(pe − qe − 1) = lk(T c

f , Te
+),

lk(Tegα , Tfgα
+) =

1

2
(pe − qe + 1) = lk(Te, T

c
f
+).

(3) Similar with (2).
(4) Since e0 /∈ Tf and e0 /∈ Te, Tegα and Tfgα are related as the same way with

the relation between Te and Tf in the base link, so that we have the results. 2

Lemma 5.8. For α, β with k + 1 ≤ α, β ≤ n,

lk(Tfgα , Tegβ
+) =

{
0, if α ̸= β;

lk(Tf , T
+
e ), if α = β;
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Proof. If α ̸= β, Tfgα and Tegβ do not intersect so that lk(Tfgα , Tegβ
+) = 0. If

α = β, Tegα and Tfgα are related as the same way with the relation between Te and
Tf in the base link, so that lk(Tfgα , Tegβ

+) = lk(Tf , T
+
e ). 2

Lemma 5.9. Suppose that e0 ∈ Te. For α, β with k + 1 ≤ α ≤ n and 1 ≤ β ≤ k,

lk(Tfgα , Tegβ
+) =

{
−lk(Tf , T

c
e
+), if Tfgα∥Tegβ ;

lk(Tf , T
c
e
+) if Tfgα ̸ ∥Tegβ ,

lk(Tegβ , Tfgα
+) =

{
−lk(T c

e , Tf
+), if Tfgα∥Tegβ ;

lk(T c
e , Tf

+), if Tfgα ̸ ∥Tegβ .

Here Tfgα ∥Tegβ means Tfgα and Tegβ have the parallel orientation, while
Tfgα ̸ ∥Tegβ means Tfgα and Tegβ have the opposite orientation.

Proof. Assume that Tf \ {f} contains pf positive crossings and qf negative cross-
ings, so that Tfgα and Tegβ contain pf positive crossings and qf negative crossings.
Suppose that Tfgα and Tegβ have the parallel orientation. Since pf + qf is odd, by
Theorem 2.2 and Lemma 5.6 (3),

lk(Tfgα , Tegβ
+) = −1

2
(pf − qf − 1) = −lk(Tf , T

c
e
+)

lk(Tegβ , Tfgα
+) = −1

2
(pf − qf + 1) = −lk(T c

e , Tf
+).

For the case that Tfgα and Tegβ have the opposite orientation, one can use the
similar argument to get the required equations. 2

Remark 5.10. The equalities in Lemma 5.9 are hold for the case that e is the fixed
edge e0.

Lemma 5.11. For α, β with α ̸= β, 1 ≤ α, β ≤ k, assume that Tegα∩Tegβ consists of
d copies of P . Suppose that P contains p positive crossings and q negative crossings.

(1) if p+ q is even and if Tfgα∥Tegβ ,

lk(Tfgα , Tegβ
+) = d · lk(P, P

+
), lk(Tegβ , Tfgα

+) = d · lk(P , P
+
).

(2) if p+ q is even and if Tfgα ̸ ∥Tegβ ,

lk(Tfgα , Tegβ
+) = −d · lk(P, P

+
), lk(Tegβ , Tfgα

+) = −d · lk(P , P
+
).

(3) if p+ q is odd, d is even and if Tfgα ∥Tegβ ,

lk(Tfgα , Tegβ
+) = d · lk(P, P

+
) +

1

2
d, lk(Tegβ , Tfgα

+) = d · lk(P , P
+
) +

1

2
d.
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(4) if p+ q is odd, d is even and if Tfgα ̸ ∥Tegβ ,

lk(Tfgα , Tegβ
+) = −d·lk(P , P

+
)− 1

2
d, lk(Tegβ , Tfgα

+) = −d·lk(P , P
+
)− 1

2
d.

(5) if p+ q is odd, d is odd and if Tfgα ∥Tegβ ,

lk(Tfgα , Tegβ
+) = d·lk(P, P

+
)+

1

2
(d±1), lk(Tegβ , Tfgα

+) = d·lk(P, P
+
)+

1

2
(d∓1).

(6) if p+ q is odd, d is odd and if Tfgα ̸ ∥Tegβ ,

lk(Tfgα , Tegβ
+) = −d·lk(P, P

+
)−1

2
(d±1), lk(Tegβ , Tfgα

+) = −d·lk(P, P
+
)−1

2
(d∓1).

Proof. Since Tegα ∩Tegβ consists of d copies of P , Tfgα ∩Tegβ consists of dp positive
crossings and dq negative crossings.

(1) Since Tfgα and Tegβ have the parallel orientation and since d(p+ q) is even,
by Theorem 2.2,

lk(Tfgα , Tegβ
+) = −1

2
(dp− dq) = d · lk(P , P

+
),

lk(Tegβ , Tfgα
+) = −1

2
(dp− dq) = d · lk(P , P

+
),

because lk(P, P
+
) = −1

2 (p− q).
(2) Since Tfgα and Tegβ have the opposite orientation, −Tfgα and Tegβ have the

parallel orientation, where −Tfgα denotes the reverse curve of a curve Tfgα . By (1)

lk(Tfgα , Tegβ
+) = −lk(−Tfgα , Tegβ

+) = −d · lk(P, P
+
),

lk(Tegβ , Tfgα
+) = −lk(−Tegβ , Tfgα

+) = −d · lk(P, P
+
).

(3) Since Tfgα and Tegβ have the parallel orientation and since d(p+ q) is even,
by Theorem 2.2,

lk(Tfgα , Tegβ
+) = −1

2
(dp− dq) = d · lk(P , P

+
) +

1

2
d,

lk(Tegβ , Tfgα
+) = −1

2
(dp− dq) = d · lk(P , P

+
) +

1

2
d,

because lk(P, P
+
) = −1

2 (p− q + 1).
(4) Similar with (2).
(5) Since Tfgα and Tegβ have the parallel orientation and since d(p+ q) is odd,

by Theorem 2.2,

lk(Tfgα , Tegβ
+) = −1

2
(dp− dq ± 1) = d · lk(P , P

+
) +

1

2
(d± 1),

lk(Tegβ , Tfgα
+) = −1

2
(dp− dq ∓ 1) = d · lk(P , P

+
) +

1

2
(d∓ 1),
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because lk(P , P
+
) = − 1

2 (p− q + 1).
(6) Similar with (2). 2

Remark 5.12. The equalities in Lemma 5.11 are hold for the case that both e and
f are the fixed edge e0.

From Lemma 5.1, Lemma 5.3 and Lemma 5.7-Lemma 5.11, one can get the
following theorem.

Theorem 5.13. Let D be a diagram of a link with two fixed edges e and f , which
is depicted as in Figure 8. If ϕ : E(D) → G is a voltage assignment such that
ϕ(g) = 1G for all edge g ̸= e, f . A Seifert matrix of the symmetric link D×ϕ G can
be obtained from the Seifert matrix of D and the information of the group action.

In the following example, we will use our lemmas to calculate a Seifert matrix
of D ×ϕ G in Figure 9.

Example 5.14. Recall that G = Z2 ⊕ Z2 and that the embedding surface S̃ for
D ×ϕ G is the 2-sphere S2. We have seen that Figure 11 shows the generators

{Ta1 , Ta2} of H1(F ) and the generators of H1(F̃ ):

{Ta
g1
1
, Ta

g1
2
, Ta

g2
1
, Ta

g2
2
, Ta

g3
1
, Ta

g3
2
, Ta

g4
1
, Ta

g4
2
, Te

g1
0
}.

One can see that our Seifert matrix for D is given by

M =

(
−1 −1
0 −1

)
.

The Seifert matrix of D×ϕG is obtained by using above lemmas, as seen in the
following table.

T
a
g1
1

+ T
a
g1
2

+ T
a
g2
1

+ T
a
g2
2

+ T
a
g3
1

+ T
a
g3
2

+ T
a
g4
1

+ T
a
g4
2

+ T
e
g1
0

+

Ta
g1
1

Ta
g1
2

Ta
g2
1

Ta
g2
2

Ta
g3
1

Ta
g3
2

Ta
g4
1

Ta
g4
2

Te
g1
0



Lemma 5.7
Lemma 5.7

Lemma 5.9
Lemma 5.9

Lemma 5.9
Lemma 5.9

Lemma 5.9
Lemma 5.9

Lemma 5.7
Lemma 5.7

Lemma 5.9
Lemma 5.9

Lemma 5.8
Lemma 5.8

Lemma 5.8
Lemma 5.8

Lemma 5.8
Lemma 5.8

Lemma 5.9
Lemma 5.9

Lemma 5.9
Lemma 5.9

Lemma 5.8
Lemma 5.8

Lemma 5.8
Lemma 5.8

Lemma 5.8
Lemma 5.8

Lemma 5.9
Lemma 5.9

Lemma 5.9
Lemma 5.9

Lemma 5.8
Lemma 5.8

Lemma 5.8
Lemma 5.8

Lemma 5.8
Lemma 5.8

Lemma 5.9
Lemma 5.9

Lemma 5.7 Lemma 5.9 Lemma 5.9 Lemma 5.9 Lemma 5.11


.

Notice that

lk(P, P
+
) = −1

2
(1− 0 + 1) = −1,

because the path P in this example has p = 1 positive crossings and q = 0 negative
crossings. Since Te

g1
0

consists of 4 copies of P , lk(Ta
g1
1
, Ta

g1
1

+) = 3(−1)−1+2 = −2
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by Lemma 5.7(1) and lk(Te
g1
0
, Te

g1
0

+) = 4·(−1)+ 1
2 ·4 = −2 by Lemma 5.11. One can

calculate the other entries by applying a suitable equation in the lemmas. Indeed,
the Seifert matrix M̃ for D ×ϕ G is given by

-2 -2 0 0 0 0 0 0 -2
-1 -2 0 0 0 0 0 0 -2
-1 -1 -1 -1 0 0 0 0 -1
-1 -1 0 -1 0 0 0 0 -1
-1 -1 0 0 -1 -1 0 0 -1
-1 -1 0 0 0 -1 0 0 -1
1 1 0 0 0 0 -1 -1 1
1 1 0 0 0 0 0 -1 1
-1 -1 0 0 0 0 0 0 -2


.
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