DOI QR코드

DOI QR Code

Synthesis and Electrochemical Properties of Li[Ni1/3Co1/3Mn1/3]O2 Nanowire by the Electrospinning Method

전기방사법을 이용한 Li[Ni1/3Co1/3Mn1/3]O2 나노 섬유의 합성 및 전기화학적 특성

  • Kang, Chung-Soo (Department of Nano-Polymer Science & Engineering, Chungju National University) ;
  • Son, Jong-Tae (Department of Nano-Polymer Science & Engineering, Chungju National University)
  • 강충수 (충주대학교 나노고분자공학과) ;
  • 손종태 (충주대학교 나노고분자공학과)
  • Received : 2011.08.22
  • Accepted : 2011.09.22
  • Published : 2011.10.01

Abstract

Nano-fibers of the $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_2$ electrode were synthesized from a metal oxide precursor using the electrospun method. The XRD patterns of all prepared powders showed a hexagonal ${\alpha}$ - $NaFeO_2$ structure (space group: R-3 m, 166). Scanning electron microscopy showed that all the synthesized samples were comprised of nanofibers with a size of 100~800 nm. Among the samples tested, the calcined $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_2$ nanowires in oxygen heating atmosphere showed a high charge and discharge capacity of 239.22 and 172.81 $mAhg^{-1}$ at the $1^{st}$ cycle, respectively. In addition, the charge transfer resistance was also improved significantly compared to the other samples.

Keywords

References

  1. N. Yabuuchi and T. Ohzuku, J. Power Sources, 119, 171 (2003). https://doi.org/10.1016/S0378-7753(03)00173-3
  2. K. M. Shaju, G. V. Subba Rao, and B. V. R. Chowdari, Electrochem. Acta., 48, 145 (2002). https://doi.org/10.1016/S0013-4686(02)00593-5
  3. S. H. Park, S. W. Oh, and Y. K. Sun, J. Power Sources, 146, 622 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.078
  4. M. Kageyama, D. Li, K. Kobayakawa, Y. Sato, and Y. S. Lee, J. Power Sources, 157, 494 (2006). https://doi.org/10.1016/j.jpowsour.2005.08.002
  5. G. H. Kim, S. T. Myung, H. J. Bang, J. Prakash, and Y. K. Sun, Electrochem. Solid State Lett., 7, A477 (2004). https://doi.org/10.1149/1.1809554
  6. Y. Ding, P. Zhang, and D. Gao, J. Alloys Comp., 456, 344 (2008). https://doi.org/10.1016/j.jallcom.2007.02.074
  7. T. Ohzuku and Y. Makimura, Chem. Lett., 7, 642 (2001).
  8. S. Zhang, X. Qiu, Z. He, D. Wang, and W. Zhu, J. Power Sources, 153, 350 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.021
  9. Yanhuai Ding, Ping Zhang, Zhilin Long, Young Jiang, and Fu Xu, J. Alloys Comp., 487, 507 (2009). https://doi.org/10.1016/j.jallcom.2009.08.002
  10. S. W. Choi, J. R. Kim, Y. R. Ahn, S. M. Jo, E. J. Cairns, Chem. Mater., 19, 104 (2007). https://doi.org/10.1021/cm060223+
  11. A. Singhal, G. Skandan, G. Amatucci, F. Badway, N. Ye, A. Manthiram, H. Ye, and J. J. Xu, J. Power Sources, 129, 38 (2004). https://doi.org/10.1016/j.jpowsour.2003.11.010
  12. X. Tu, G. Lu, Y. Zeng, Z. Yuan, and X. Hu, J. Mater. Sci. Technol., 21, 552 (2005).
  13. S. W. Choi, S. M. Jo, W. S. Lee, and Y. R. Kim, Adv. Mater., 12, 2027 (2003).
  14. J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, and B. C. Kim, Electrochem. Acta., 50, 69 (2004). https://doi.org/10.1016/j.electacta.2004.07.014
  15. J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, and B. C. Kim, J. Electrochem. Soc., 152, A295 (2005). https://doi.org/10.1149/1.1839531

Cited by

  1. Effects of iron doping at 55 °C on LiNi0.85Co0.10Al0.05O2 vol.65, pp.2, 2014, https://doi.org/10.3938/jkps.65.243