DOI QR코드

DOI QR Code

A Study on the Correlation between Forest Fire Occurrence and Asian Dust during the Spring Season from 2000 to 2008

2000~2008년 봄철 황사와 산불발생의 관계 분석

  • Won, Myoung-Soo (Division of Forest Disaster Management, Korea Forest Research Institute) ;
  • Yoon, Suk-Hee (Division of Forest Disaster Management, Korea Forest Research Institute) ;
  • Lee, Woo-Kyun (Faculty of Environmental Science and Ecological Engineering, Korea University-Seoul)
  • 원명수 (국립산림과학원 산림방재연구과) ;
  • 윤석희 (국립산림과학원 산림방재연구과) ;
  • 이우균 (고려대학교 환경생태공학과)
  • Received : 2011.03.18
  • Accepted : 2011.09.30
  • Published : 2011.09.30

Abstract

The purpose of this study is to analyze the patterns of forest fire possibly related with Asian dust event and carry out a correlation analysis between forest fire occurrence and existence or not of the Asian dust event during dry seasons i.e. February to May in 2000 to 2008. To study the correlation of forest fire and Asian dust, we surveyed information of Asian dust observations, forest fire statistics, fire danger rating index, weather data such as temperature, relative humidity and wind speed of the day occurring the forest fire. As a consequence of analysis, the regional frequency of Asian dust was the highest in Gyeonggi and Chungbuk divisions. Frequencies of forest fire occurrence by the Asian dust events were the highest in the day before three days of the Asian dust event. The highest frequent regions of forest fire occurrence were district of boundary line between Gyeonggi and Western of Gangwon, Chungbuk and Gyeonbuk inland. The correlation between forest fire and fire danger rating index showed the high correlation with the day before three days and after three days of the Asian dust event. These correlation coefficients were 0.50038 and 0.53978 to 1% significance level. The result of analysis between the frequency of forest fire occurrence and wind speed had a highly negative relationship at all the Asian dust days, the day before and after three days. The correlation coefficients had been -0.58623 to -0.61245 to 1% significance level. Relative humidity showed a little of negative relationship with forest fire occurrence in -0.2568(p ${\leq}$ 0.01) for the Asian dust day and -0.35309(p ${\leq}$ 0.01) for next three days. Moreover, at the day before three days of Asian dust events, it was -0.23701 to 1% significance level. However, the mean temperature did not correlate with frequency of forest fire occurrence by Asian dust events at all.

산불발생 위험성이 높은 봄철(2~5월)을 대상으로 2000년부터 2008년까지의 한반도 황사 관측 유무에 따른 산불발생과의 상관관계를 알아보고 황사로 인한 산불발생 패턴을 파악하기 위하여 9개의 황사 영향권역을 설정한 후 황사가 관측된 날과 황사가 관측되지 않았던 전 후 3일에 대한 지역별 자료를 ArcGIS 9.2에서 1km${\times}$1km 공간 해상도로 거리역산가중(IDW) 분석을 실시하였다. 그리고 산불발화지 인근 기상관측소의 기온, 상대습도, 풍속 자료는 황사가 있던 날과 없던 전 후 3일에 대한 산불발생패턴을 파악하고 황사와 산불발생위험의 상관분석을 실시하였다. 2000~2008년 황사 관측은 3월에 36회, 4월에 30회 순으로 발생하였고, 권역별로는 황사빈도가 경기와 충북 권역에서 가장 높게 나타났다. 황사관측 유무에 따른 지역별 산불발생빈도는 황사 3일 전이 가장 높게 나타났으며, 경기와 강원 영서 권역이 경계한 인접지역과 충청 및 경북 내륙에서 가장 높게 나타났다. 반대로 경남 권역은 2건 이하로 가장 낮은 산불발생빈도를 보였다. 황사관측 유무에 따른 산불발생과 위험지수의 상관관계는 황사 전 후 3일에만 상관계수($R^2$)가 0.50038과 0.53978로 1% 유의수준에서 상관하는 것으로 나타났다. 그러나 황사가 관측된 날에는 서로 상관하지 않는 것으로 나타났다. 산불발생빈도와 기상과의 관계를 분석한 결과는 황사관측 유무 모두에서 풍속이 산불발생과 1% 유의수준에 -0.58623 ~ -0.61245로 상관이 높은 것으로 나타났다. 또한 상대습도는 황사관측 일과 3일 후에 -0.2568, -0.35309(p${\leq}$0.01)로 유의한 것으로 나타났으며, 황사3일 전은 -0.23701(p${\leq}$0.05)의 상관을 보였다. 그러나 평균기온은 황사관측 유무에 따라 산불발생이 전혀 상관하지 않았다. 따라서 우리나라 산불의 대부분은 인위적으로 발생하기 때문에 지역별로 황사 관측 유무에 따라 야외활동의 증감이 산불발생에 영향을 주는 것으로 판단되며, 기상 요소 중에서 평균풍속은 황사 관측과 무관하게 산불발생에 가장 큰 영향을 주었다.

Keywords

References

  1. Chung, Y. S., 1986: Air pollution detection by satellite. The transport and deposition of air pollutants over oceans. Atmospheric Environment 20, 617-630. https://doi.org/10.1016/0004-6981(86)90177-0
  2. Gao, T., X. Yu, Q. Ma, H. Li, X. Li, and Y. Si, 2003: Climatology and trends of the temporal and spatial distribution of sandstorms in Inner Mongolia. Water, Air and Soil Pollution Focus 3(2), 51-60. https://doi.org/10.1023/A:1023265818114
  3. Hara, Y., I. Uno, and Z. Wang, 2006: Long-term variation of Asian dust and related climate factors. Atmospheric Environment 40(35), 6730-6740. https://doi.org/10.1016/j.atmosenv.2006.05.080
  4. IPCC, 1995: Climate Change 1995, Intergovernmental Panel on Climate Change. Cambridge University Press, 562pp.
  5. Kim, D. H. and M. B. Lee, 2010: Study on the ignition of fallen leaves by a cigarette butt. Journal of Korean Institute of Fire Science & Engineering 24(5), 39-49. (in Korean with English abstract)
  6. Kim, J., 2008: Transport routes and source regions of Asian dust observed in Korea during the past 40 years (1965-2004). Atmospheric Environment 42, 4778-4789. https://doi.org/10.1016/j.atmosenv.2008.01.040
  7. Kim, J. S. and D. H. Doh, 2007: Countermeasures on yellow dust problem. The Korean Society of Visualization 5(2), 3-8. (in Korean with English abstract) https://doi.org/10.5407/JKSV.2007.5.2.003
  8. Kim, G. S., 1992: Encyclopedia of meteorology(Korean Edition). Hyang Moon Publ., 735pp.
  9. Korea Forest Research Institute, 2011: Annual report of forest research in 2010-Forest conservation, 206-209.
  10. Korea Forest Service, 2008: Statistical yearbook of forest fire, 201pp.
  11. Lee, S. Y., S. Y. Han, M. S. Won, S. H. An, and M. B. Lee, 2004: Developing of forest fire occurrence probability model by using the meteorological characteristics in Korea. Korean Journal of Agricultural and Forest Meteorology 6(4), 242-249. (in Korean with English abstract)
  12. Lee, S. Y., M. S. Won, and S. Y. Han, 2005: Developing of forest fire occurrence danger index using fuel and topographical characteristics on the condition of ignition point in Korea. T. of Korean Institute of Fire Sci. & Eng. 19(4), 75-79. (in Korean with English abstract)
  13. Liu, B., M. Xu, M. Henderson, and Y. Qi, 2005: Observed trends of precipitation amount, frequency, and intensity in China, 1960-2000. Journal of Geophysical Research 110, D08103. https://doi.org/10.1029/2004JD004864
  14. Ministry of Education, Science and Technology, 2003: Report of natural hazard prevention research. Development of forest fire behavior prediction and monitoring techniques, 371pp.
  15. Ministry of Environment, 2008: A comprehensive counterplan for protection against the Asian dust. 83pp.
  16. Natsagdorj, L., D. Jugder, and Y. S. Chung, 2003: Analysis of duststorms observed in Mongolia during 1937-1999. Atmospheric Environment 37, 1401-1411. https://doi.org/10.1016/S1352-2310(02)01023-3
  17. Qian, W., L. Quan, and S. Shi, 2002: Variations of the dust storm in China and its climatic control. Journal of Climate 15(10), 1216-1229. https://doi.org/10.1175/1520-0442(2002)015<1216:VOTDSI>2.0.CO;2
  18. Sun, L., X. Zhou, J. Lu, Y. P. Kim, and Y. S. Chung, 2003: Climatology, trend analysis and prediction of sandstorms and their associated dustfall in China. Water, Air and Soil Pollution Focus 3(2), 41-50. https://doi.org/10.1023/A:1023213801276
  19. Van Wagner, C. E., 1987: Development and Structure of the Canadian Forest Fire Weather Index System. Canadian Forest Service. Petawawa National Forestry Institute. Chalk River Ontario. Forestry Technical Report 35, 37pp.
  20. Won, M. S., K. S. Koo, and M. B. Lee, 2006: An analysis of forest fire occurrence hazards by changing temperature and humidity of ten-day intervals for 30 years in spring. Korean Journal of Agricultural and Forest Meteorology 8(4), 250-259. (in Korean with English abstract)
  21. Zhang, D., 1984: Synoptic-climate studies of dustfall in China since historic times. Scientia Sinica (Series B) 27(8), 825-836.
  22. Zhang, G, Z., 2007: Study on the State Evaluation and Control Strategy of Land Desertification in Beijing. Beijing Forestry University, 120pp.
  23. http://www.konetic.or.kr/ (2008.10.25)
  24. http://www.kma.go.kr/weather/asiandust/observday.jsp (2008. 10. 25)
  25. http://news.naver.com/main/read.nhn?mode=LPOD&mid=tvh&oid=214&aid=0000098273 (2009.3.20)