DOI QR코드

DOI QR Code

Oxidative Stress and Antioxidant Responses in Poplar Clones Irrigated with Livestock Waste Leachate

양돈폐수 처리에 의한 포플러클론의 산화스트레스와 항산화반응

  • Received : 2011.08.12
  • Accepted : 2011.09.25
  • Published : 2011.09.30

Abstract

We studied the influence of livestock waste leachate on oxidative damage and antioxidative responses in poplar clones in August which increase the demand of antioxidants because of high temperature and high light during this period. We measured ion leakage, antioxidant enzyme activities (APX, GR), and carotenoid contents. Oxidative damage and antioxidative responses by treated livestock waste leachate in poplar clones showed various results. We divided poplar clones into three groups using the criteria based on ion leakage which represent cell damage induced oxidative stress. Eco 28, 62-10, Bonghwa1 and Dorskamp belonged to the first group in which the cell damaged level was lower than that of the control. The results suggest that this group augmented for demand of antioxidative in summer because high concentration of nitrogen induced by treatment of live stock wastes acted as environmental stress. Consequently, they failed to keep up the homeostasis of reactive oxygen species. The second group in which the cell damaged level was similar to that of the control was Suwon, 72-30 and 72-31 clones. Finally, 97-18 clone belonged to the third group in which the cell damaged level was lower than that of the control group. In this case, nitrogen treated by livestock waste leakage decreased oxidative stress. 97-18 clone was the clones with the least damage in summer oxidative stresses treated by livestock waste leakage. These results suggest that the high concentration nitrogen due to the livestock waste leakage can act differently upon the clones. We speculate that the added oxidation damage in the summer (growing season) may have an effect on the total fresh weight and also influence the purification ability for livestock waste leakage. However, further studies are needed for the confirmation.

고온과 고광으로 인해 항산화요구도가 높은 8월 시기에 포플러클론들의 산화피해와 항산화반응에 대하여 양돈폐수의 영향에 대하여 알아보았다. 잎의 이온유출량과 항산화효소 APX와 GR의 활성, 그리고 카로테노이드 함량을 조사였다. 포플러클론의 양돈폐수 처리에 따른 산화피해와 항산화반응은 다양하게 나타났다. 산화스트레스로 인한 세포막 피해 수준을 알 수 있는 이온유출량 기준으로, 크게 세 그룹으로 분류하였다. 첫번째 그룹은 세포막 피해수준이 대조구보다 높게 나타난 클론들로서 Eco 28, 62-10, Bonghwa1, Dorskamp가 포함되었다. 이들 그룹은 양돈폐수 처리로 인한 고농도 질소함량이 스트레스로 작용하여 여름철 항산화요구도가 더욱 가중된 것으로 보인다. 그래서 결과적으로 활성산소에 대한 항상성을 유지하지 못하였다. 두번째 그룹은 세포막 피해수준이 대조구와 유사한 Suwon, 72-30, 72-31 이었다. 세 번째 그룹은 세포막 피해수준이 대조구보다 낮게 나타난 97-18 이었다. 97-18 클론의 경우 양돈폐수 처리로 인해 공급된 질소가 여름철 산화스트레스에 대한 피해를 경감시켜, 양돈폐수 처리로 인한 여름철 산화피해가 가장 적은 클론으로 나타났다. 이러한 결과들은 양돈폐수로 인한 고농도 질소가 클론마다 서로 다르게 작용할 수 있음을 의미한다. 생장시기인 여름철에 가중되는 산화피해는 전체 생중량에 영향을 주어 양돈폐수 정화능력에도 영향을 미칠 수 있을 것으로 생각된다. 그러나 이러한 부분에 대해 추후 연구가 더 필요하다.

Keywords

References

  1. Arnon, D. I., 1949: Copper enzymes in isolated chloroplasts, polyphenol-oxidase in Betula vulgaris. Plant Physiology 24, 1-15. https://doi.org/10.1104/pp.24.1.1
  2. Bradford, M. M., 1976: A rapid and sensitive method for the quantiation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72(2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Cakmak, I., D. Strbac, and H. Marchner, 1993: Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. Journal of Experimental Botany 44, 127-132. https://doi.org/10.1093/jxb/44.1.127
  4. Cooke, J. E. K., T. A. Martin, and J. M. Davis, 2005: Shortterm physiological and developmental responses to nitrogen availability in hybrid poplar. New Phytologist 167, 41-52. https://doi.org/10.1111/j.1469-8137.2005.01435.x
  5. Correia, C. M., J. M. Moutinho-Pereira, J. F. Coutinho, L. O. Björn, and J. M. G. Torres-Pereira, 2005: Ultraviolet-B radiation and nitrogen affect the photosynthesis of maize: a Mediterranean field study. European Journal of Agronomy 22, 337-347. https://doi.org/10.1016/j.eja.2004.05.002
  6. Guo, J., Y. Yang, G. Wang, L. Yang, and X. Sun, 2010: Ecophysiological responses of Abies fabri seedlings to drought stress and nitrogen supply. Physiologia Plantarum 139, 335-347.
  7. Inze, D., and M. van Montagu, 2002: Oxidative stress in Plants, Taylor & Francis Inc, New York, NY.
  8. Je, S. M., S. Y. Woo, Y. B. Koo, J. K. Yeo, and S. Z. Ryang, 2007: Physiological Characteristics and Antioxidant Enzyme Activity of Populus euramericana and Populus alba O Populus glandulosa under Livestock Waste Leachate Treatment, Journal of Korean Forest Society 96(3), 369-375. (in Korean with English abstract)
  9. Lee, E. D., S. Y. Woo, J. K. Lee, Y. B. Koo, and S. H. Chun, 2009: Sapflow Change and Growth Response of Poplar Species under Swine Wastewater Irrigation. Journal of Korean Forest Society 98(6), 740-747. (in Korean with English abstract)
  10. Ministry of Environment, 2010: 2010 White Paper of Environment. Ministry of Environment, 424pp (in Korean)
  11. Nakaji, T., M. Fukami, Y. Dokiya, and T. Izuta, 2001: Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees 15, 453-461.
  12. Nakano, Y., and K. Asada, 1981: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant Cell Physiology 22, 867-880.
  13. Reddy, A. R., K. V. Chaitanya, and M. Vivekanandan, 2004: Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology 161, 1189-1202. https://doi.org/10.1016/j.jplph.2004.01.013
  14. Reiter, W. D., 1998: The molecular analysis of cell wall components. Trends in Plant Science 3, 27-32. https://doi.org/10.1016/S1360-1385(97)01169-2
  15. Saneoka, H., R. E. A. Moghaieb, G. S. Premachandra, and K. Fujita, 2004: Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds. Environmetal and Experimental Botany 52, 131-138. https://doi.org/10.1016/j.envexpbot.2004.01.011
  16. M. Mi, 2008: Higher plant antioxidants and redox signaling under environmental stresses. Comptes Rendus Biologies 331, 433-441. https://doi.org/10.1016/j.crvi.2008.03.011
  17. Yao, X.Q., and Q. Liu, 2006: Changes in morphological, photosynthetic and physiological responses of Mono Maple seedlings to enhanced UV-B and to nitrogen addition. Plant Growth Regulation 50, 165-177. https://doi.org/10.1007/s10725-006-9116-4
  18. Yeo, J. K., Y.B. Koo and D. S. Son, 2001: Growth Response and Absorption Capacity of Poplars on Livestock Waste Water, Journal of Korean Forest Society 90(6), 734-741. (in Korean with English abstract)
  19. Yeo, J. K., I. S. Kim, Y. B. Koo, T. S. Kim, and D. S. Son, 2002: Absorption Ability and tolerance to Livestock Waste Water of Poplar Species and Clones, Journal of Korean Forest Society 19(8), 912-920. (in Korean with English abstract)
  20. Yeo, J. K., Y. B. Koo, H. N. Shin, and E. D. Lee, 2010a: Removal of Swine Wastewater by Evapotranspiration Poplar Plantation and Growth Characteristics of Poplar Clones. Korea Society of Waste Management 27(3), 226-233. (in Korean with English abstract)
  21. Yeo, J. K., Y. B. Koo, H. N. Shin, K. S. Woo, H. C. Kim, and S. Y. Woo, 2010b: The phytoremediation using the rapid growth trees, Korea Forest Research Institute, pp 41. (in Korean)
  22. Zhao, C., and Q. Liu, 2009: Growth and phygiological responses of Picea asperata seedings to elevated temperature and to nitrogen fertilization. Acta Physiologiae Plantarum 31, 163-173. https://doi.org/10.1007/s11738-008-0217-8